从NLP视角看电视剧《狂飙》,会有什么发现?

博客 分享
0 176
张三
张三 2023-03-02 20:26:30
悬赏:0 积分 收藏

从NLP视角看电视剧《狂飙》,会有什么发现?

关键词: 爬虫、文本数据预处理、数据分析、可视化、自然语言处理

摘要: 本文主要内容,获取解析豆瓣《狂飙》的短评相关数据和演职员信息,在数据预处理后,进行简单的数据分析和可视化展示。

本文全部代码路径: https://github.com/fengxi177/pnlp2023/tree/main/chapter_1


1、背景

前文 文本数据预处理:可能需要关注这些点 分享了关于文本预处理的理论知识,本文将分享一份示例demo。正好,碰到了热议的电视剧《狂飙》。因此,本文打算从自然语言处理、数据分析和可视化的角度来凑个热闹(原本计划在大结局当天发出来文章,可惜,大结局有一段时间了。拖延了,哈哈哈)。

2、数据获取

既然要做电视剧《狂飙》相关的nlp数据分析,那么就先选定数据目标站。经过一圈搜寻对比,发现还是豆瓣中的评论更为客观,参与群体数量多,见解更丰富专业,哈哈哈。因此,本文将获取 https://movie.douban.com/subject/35465232/ 页面中的相关数据。

截止2023年2月28日,豆瓣中电视剧《狂飙》的短评已经22w+(2023年2月6日13w+,评论热度依然很高)。通过翻看短评数据,可以发现不登录状态最多可以获取220条数据,登录后最多可以获取600条数据。一般,可以通过cookie和selenium的方式实现登录,网上有参考教程,自行搜集。

image

不过,在不登录状态下,通过URL参数设置分析,发现各参数下都可以获得220条数据。因此,本文只获取不登录状态下的数据。具体的,通过好评、中评和差评参数percent_type设置分别获取220条短评及其相关数据。(特别的,仔细观察URL的参数设置还可以获得更多的数据哦。)

点击查看爬虫代码
def parse_comments(url):
    """
        解析HTML页面,获得评论及相关数据
    :param url:
    :return:
    """
    html = get_html(url)
    soup_comment = BeautifulSoup(html, 'html.parser')

    # 所有获取的一页数据
    data_page = []

    # 提取评论
    comments_all = soup_comment.findAll("div", "comment-item")
    for comments in comments_all:
        try:
            # 解析评论及相关数据
            comment_info = comments.find("span", "comment-info")  # 评论id相关信息
            comment_vote = comments.find("span", "comment-vote")  # 评论点赞信息
            comment_content = comments.find("span", "short").text.replace("\n", "")  # 评论内容

            # 提取需要的各字段信息
            info_list = comment_info.findAll("span")
            star_rating = info_list[1]

            user_name = comment_info.find("a").text
            video_status = info_list[0].text  # 电视剧观看状态
            comment_score = int(star_rating["class"][0][-2:])  # 评论分值
            comment_level = star_rating["title"]  # 评论等级
            comment_time = info_list[2].text.replace("\n", "").replace("    ", "")  # 评论时间
            # print(info_list)
            comment_location = info_list[3].text  # 评论位置

            comment_vote_count = int(comment_vote.find("span", "votes vote-count").text)  # 评论被点赞数

            # 获取的一条数据
            # ["用户名", "电视剧观看状态", "评论分数", "评论等级", "评论时间", "评论位置", "评论点赞数", "评论"]
            data_row = [user_name, video_status, comment_score, comment_level,
                        comment_time, comment_location,
                        comment_vote_count, comment_content]
            data_page.append(data_row)
        except:
            # 跳过解析异常的数据
            continue

    return data_page

完整代码:请查看get_comments_data.py文件

此外,本文还获取了《狂飙》的演职员信息数据,页面解析的代码片段如下。

点击查看代码

    html = get_html(url)
    soup_info = BeautifulSoup(html, 'html.parser')

    # 获得的结果信息
    result_info_dict = {}

    # 提取评论
    info_all = soup_info.findAll("div", "info")
    for info in info_all:
        info_name = info.find("span", "name").text
        info_role = info.find("span", "role").text
        info_works_list = info.find("span", "works").findAll("a")

完整代码:请查看get_celebrity_info.py文件。

3、文本分析与可视化

3.1 短评数据预处理

文本数据预处理的详细介绍,可以参考文章文本数据预处理:可能需要关注这些点。在实际的应用分析中,数据预处理并不是等数据完全收集完毕后一蹴而就的。通常,在合适的时候进行必要的处理是十分必要的,比如本文在解析爬取数据的时候会进行一些替换和数据转换操作。

3.2 词云图可视化

词云图作为一种直观、简洁、易于理解的数据可视化方法,通过词云图文字大小、颜色、字体等方式的展示,人们可以迅速了解文本数据中的关键词和主题等有用信息。

本文利用pyecharts生成短评的词云图,其他也可以通过wordcloud包绘制词云图。特别的,可以通过背景图设置生成各种形状的词云图。

image

3.3 top关键词共现矩阵网络

文本中关键词是很重要的特征,关键词共现矩阵网络是一组文本中词或短语之间的共现关系网。该网络可以帮助我们发现文本中的潜在主题、领域和关联性,也可以用于文本数据可视化和分析。共现网络中,每个关键词被表示为一个节点,词之间的共现关系被表示为边,关键词之间的共现频率表示权重。我们可以使用网络分析算法挖掘文本中的相关主题和模式。

利用pyecharts可视化短评top 2000关键词的词共现结果如图所示。

image

Gephi是一个常用的网络分析和可视化软件,本文同时用gephi可视化了一组top 2000关键词的词共现关系图如下。

image

image

Gephi可视化结果

3.4 《狂飙》演职员图谱构建

知识图谱是一种将实体、属性、关系等知识以图谱的形式进行表示和存储的技术,可以帮助人们更加直观地了解知识的关联和组织方式。在影视、音乐、文学等领域,知识图谱也被广泛应用于作品分析、人物关系探究方面。

知识图谱的构建需要经过多个阶段,包括实体识别、关系抽取、实体链接等步骤。本文通过爬取《狂飙》的演职员信息,进行数据清洗和处理后,使用pyecharts构建了一个包含演员、导演、编剧、代表作、《狂飙》中的饰演人物等实体,以及他们之间关系的《狂飙》演职员知识图谱,用于展示演职员、作品及饰演人物之间的关系。通过图谱关系展示,可以直观的了解到演员、导演、编剧等之间的合作关系。这些关系的分析可以帮助我们更好地了解影视行业的人际关系网络,感兴趣的朋友可以继续扩展该图谱,探索更多的应用场景。

image

《狂飙》演职员关系图谱(全部)

image

《狂飙》演职员关系图谱(姓名->角色)

image

《狂飙》演职员关系图谱(姓名->代表作)

图谱构建的代码如下:

点击查看代码

def generate_celebrity_graph():
    """
        构建演职员关系图谱
    :return:
    """
    df = pd.read_csv("./data/狂飙演职员信息表.csv")
    data = df.values.tolist()

    # 转换格式
    nodes = []
    links = []
    nodes_name = []

    symbolSize_dict = {"姓名": 30, "角色": 20, "饰演人物": 20, "代表作": 20}
    categories = [{"name": x} for x in symbolSize_dict.keys()]

    for row in data:
        # 姓名、角色(";"分割多个)、饰演人物(可能为空)、代表作(";"分割多个)
        name, role, role_to_play, works = row
        role_list = role.split(";")
        works_list = works.split(";")

        if name not in nodes_name:
            nodes_name.append(name)
            # 一个节点
            node = {
                "name": name,
                "symbolSize": symbolSize_dict["姓名"],
                "category": "姓名",
            }
            nodes.append(node)

        for role_temp in role_list:
            if role_temp not in nodes_name:
                nodes_name.append(role_temp)
                node = {
                    "name": role_temp,
                    "symbolSize": symbolSize_dict["角色"],
                    "category": "角色",
                }
                nodes.append(node)

            link = {
                "source": name,
                "target": role_temp
            }
            links.append(link)

            if role_temp == "演员":
                if role_to_play not in nodes_name:
                    nodes_name.append(role_to_play)
                    node = {
                        "name": role_to_play,
                        "symbolSize": symbolSize_dict["饰演人物"],
                        "category": "饰演人物",
                    }
                    nodes.append(node)

                link = {
                    "source": name,
                    "target": role_to_play
                }
                links.append(link)

        for works_temp in works_list:
            if works_temp not in nodes_name:
                nodes_name.append(works_temp)
                if works_temp == "狂飙":
                    node = {
                        "name": works_temp,
                        "symbolSize": 50,  # 特别设置
                        "category": "代表作",
                    }
                else:
                    node = {
                        "name": works_temp,
                        "symbolSize": symbolSize_dict["代表作"],
                        "category": "代表作",
                    }
                nodes.append(node)

            link = {
                "source": name,
                "target": works_temp
            }
            links.append(link)

    c = (
        Graph(init_opts=opts.InitOpts(theme=ThemeType.CHALK, width="1500px", height="1000px"))
        .add(
            "",
            nodes,
            links,
            categories,
            repulsion=1000,
            linestyle_opts=opts.LineStyleOpts(curve=0.6),
        )
        .set_global_opts(
            legend_opts=opts.LegendOpts(pos_left=100, pos_top=350, orient="vertical"),
            title_opts=opts.TitleOpts(title="人物关系图谱"),
        )
        .render("./result/演职员图谱.html")
    )
    print("演职员关系图谱,保存路径为:./result/演职员图谱.html")

4、短评相关数据分析与可视化

在获取评论的时候,顺便获取了关于评分、评论时间、评论位置和评论点赞数等相关数据。本文对评论位置与评论数量进行了统计分析,并将结果利用pyecharts进行了可视化展示。由柱状图可以直观看到获取评论数据量与地域之间的分布。此外,如感兴趣,还可以对“评分与时间”、“评分与位置”、“评分与点赞数”等关系进行分析,绘制折线图、饼图、地图等可视化效果。

image

5、总结

本文通过获取和解析豆瓣电视剧《狂飙》的短评和演职员信息,对这部电影进行了简单的数据分析和可视化展示。感兴趣的朋友,可以继续发散思维、扩展数据,探索发现更多的数据分析和可视化结果。


image

欢迎关注微信公众号:实用自然语言处理

原文链接:https://mp.weixin.qq.com/s/nURcYKN6vRBKjbMXAUbEng


posted @ 2023-03-02 19:21  风兮177  阅读(23)  评论(0编辑  收藏  举报
回帖
    张三

    张三 (王者 段位)

    921 积分 (2)粉丝 (41)源码

     

    温馨提示

    亦奇源码

    最新会员