FWT/快速沃尔什变换入门指南

博客 分享
0 137
张三
张三 2023-03-17 16:26:30
悬赏:0 积分 收藏

FWT/快速沃尔什变换 入门指南

来学点好玩的。


引入

我们也许学过,\(FFT\) 可以解决一类卷积:

\[C_i=\sum^{k+j=i} A_iB_j \]

现在我们稍微变一下式子:

\[C_i=\sum^{i=k \And j} A_kB_j \]

\[C_i=\sum^{i =k\mid j} A_kB_j \]

\[C_i=\sum^{i=k \oplus j} A_kB_j \]

上面那个圆圆的东西是异或

怎么求?

\(FWT\)

也就是这个式子:

\[C_i=\sum^{i =k\mid j} A_kB_j \]

\(FWT\) 的定义

模仿 \(FFT\),对于 \(A\) 我们想要在可接受时间内得到一个 \(FWT(A)\),使得

\[FWT(C)_i=FWT(A)_i\times FWT(B)_i \]

\(i\) 代表第 \(i\) 个位置的数。

这样我们就可以 \(O(n)\) 暴力乘起来了。

因此我们构造 \(FWT(A)_i=\sum^{}_{j|i=i}A_j\)

现在我们来证明这个构造的正确性。

\[FWT(A)_i\times FWT(B)_i \]

\[=\sum^{}_{j|i=i}A_j\times \sum^{}_{k|i=i}B_k \]

\[=\sum^{}_{j|i=i}\sum^{}_{k|i=i}A_j B_k \]

因为可以从 \(j|i=i\)\(k|i=i\) 中得出 \((j|k)|i=i\),所以我们还可以消去另一个式子

\[=\sum^{}_{(j|k)|i=i}A_j B_k \]

根据 \(FWT\) 的定义,这个式子就是 \(FWT(C)_i\)。证毕。

另一种理解

涉及到了或运算,我们不妨把数全都变成二进制。于是我们想到一种经典转换:将二进制中的 \(0\)\(1\) 转化为集合中一个数选还是不选。那么或操作代表什么呢?

bingo!两个集合的并集!

于是我们可以把上面的式子改写一个形式:

\[C_i=\sum^{i=k \mid j} A_kB_j \]

变成

\[C_i=\sum^{i =k\bigcup j} A_kB_j \]

注意看,这时 \(i,j,k\) 都是集合,只不过我们将其用二进制表示.

这样我们可以改写 \(FWT\) 的定义。

重新来一遍,\(FWT(A)_i=\sum^{}_{k \subseteq i} A_k\)

因此我们为 \(FWT\) 找到了新的定义,他代表着集合 \(i\) 的子集之和。我们有了更自然的推导:

\[\sum^{}_{j \subseteq i}A_j\times \sum^{}_{k \subseteq i}B_k \]

\[=\sum^{}_{j,k \subseteq i}A_j\times B_k \]

\[=\sum^{}_{x \subseteq i}\sum^{}_{j\bigcup k = x }A_j\times B_k \]

\[=\sum^{}_{x \subseteq i}C_x \]

\[=FWT(c)_x \]

换句话说,我们对子集做了个前缀和操作(发现了吗?子集的前缀和进行或卷积与普通前缀和进行加法卷积具有相似性),并用前缀和相乘代替了原来的 \(O(n^2)\) 相乘。

如何变化

我们把原序列 \(A\) 按下标最高位是 \(0\) 还是 \(1\) 分成两部分 \(A_0\)\(A_1\) 分治求解。显然,前半部分(最高位为 \(0\) 的部分)就是 \(FWT(A_0)\),所以我们考虑后半部分的答案。

后半部分最高位为 \(1\),因此此时“子集”这一概念不仅包含分治处理的他子集,还包括把最大值变为 \(0\) 后的,序列 \(A0\) 中同一位置的子集。要将 \(A_0\) 中的同一位置加到当前答案上。

写成数学形式就是:

\[FWT(A) = merge(FWT(A_0),FWT(A_0)+FWT(A_1)) \]

上面的 \(merge\) 代表拼接,就是字面意思。

于是我们就能写出分治递归代码了!但为了常数着想,我们试着把递归这一步骤去掉。

去掉的部分并不难写,我们按照层数从小到大递归,不难发现第 \(i\) 层(从 \(0\) 开始编号,最底层为 \(0\))就是枚举第 \(i\) 位是 \(0\) 还是 \(1\),并且乱填其他数进行转移。

代码也简单:

void OR(mint *f){
    for(int o = 2, k = 1; o <= n; o <<= 1, k <<= 1)// k 为当前的层,o 仅用于穷举左边进行转移
        for(int i = 0; i < n; i += o)// 穷举左边
            for(int j = 0; j < k; j++){ // 穷举右边
                f[i + j + k] = f[i + j + k] + f[i + j];
            }
}

如何转回来

再看一眼转移的式子

\[FWT(A) = merge(FWT(A_0),FWT(A_0)+FWT(A_1)) \]

思考只有两个数的情况。此时 \(1\) 位置是不会变的,\(2\) 位置加上了 \(1\) 位置的贡献,要减去。

我们发现更大的情况也是一样的,只要依次把前面的贡献减去就好。

void IOR(mint *f){
    for(int o = 2, k = 1; o <= n; o <<= 1, k <<= 1)// k 为当前的层,o 仅用于穷举左边进行转移
        for(int i = 0; i < n; i += o)// 穷举左边
            for(int j = 0; j < k; j++){ // 穷举右边
                f[i + j + k] = f[i + j + k] - f[i + j];
            }
}

这两份代码显然是可以合并的。因此我们得到了 \(FWT\) 或 的全过程。

void OR(mint *f, int type){
    for(int o = 2, k = 1; o <= n; o <<= 1, k <<= 1)
        for(int i = 0; i < n; i += o)
            for(int j = 0; j < k; j++){
                f[i + j + k] = f[i + j + k] + (f[i + j] * mint(type));
            }
}

\(FWT\)

和 或 差不多,只是要从 \(1\) 转移到 \(0\)

可以发现,实际上我们用子集后缀和优化了运算。

void AND(mint *f, int type){
    for(int o = 2, k = 1; o <= n; o <<= 1, k <<= 1)
        for(int i = 0; i < n; i += o)
            for(int j = 0; j < k; j++)
                f[i + j] = f[i + j] + (f[i + j + k] * mint(type));
}

\(FWT\) 异或

\[C_i=\sum^{i=k \oplus j} A_kB_j \]

很遗憾,我并没有发现这个东西的集合意义,如果有大佬知道可以告诉我。。。

正着转化

思考 \(FWT\) 的作用,我们想要把 \(A_kB_j\) 变成 \(A_iB_i\) 的形式,以此来简化运算。

我们考虑这样 \(n\)\(n\) 维向量 \(b\)\(b(i)\) 只有下标 \(i\) 处是 \(1\),其他位置都是 \(0\)

现在我们把 \(FWT\) 后的 \(A,B\) 看作系数,此时显然 \(A_1b(1),A_2b(2),...,A_nb(n)=A_1,A_2,A_3,A_4...,A_n\)

显然,异或卷积对于乘法有分配律。

设异或卷积为 \(\ast\),则

\[(\sum^{n}_{i=1} A_ib(i)) \ast (\sum^{n}_{i=1} B_jb(j)) \]

\[=(\sum^{n}_{i=1}\sum^{n}_{j=1} A_iB_j (b(i)\ast b(j)) \]

发现后面的东西可以简单表示,即 \(b_i \ast b_i = b_i,b_i \ast b_j = 0(i \neq j)\)

那么整个式子就是我们寻找的形式:

\[\sum^{n}_{i=1} A_iB_i \]

而我们要做的事情无非是求出 \(FWT\) 之前的 \(b_i\)

太长不看版:异或 \(FWT\) 与原序列线性相关

既然这样,我们设 \(FWT(A)_x=\sum^{n}_{i=1} g(x,i)A_i\)

那么因为 \(FWT(C)_x=FWT(A)_x\times FWT(b)_x\)

所以 \(\sum^{n}_{k=1} g(x,k)C_k=\sum^{n}_{i=1} g(x,i)A_i \times \sum^{n}_{j=1} g(x,j)B_j\)

整理一下可以得出:

\[\sum^{n}_{k=1} g(x,k)C_k=\sum^{n}_{i=1}\sum^{n}_{j=1} g(x,i)g(x,j)\times A_iB_j \]

\(C_k\)\(A,B\) 表示可得:

\[\sum^{n}_{k=1} g(x,k)\sum^{k=i \oplus j} A_iB_j=\sum^{n}_{i=1}\sum^{n}_{j=1} g(x,i)g(x,j)\times A_iB_j \]

更改求和顺序,我们枚举 \(i,j\) 可得:

\[\sum^{n}_{i=1}\sum^{n}_{j=1} g(x,i \oplus j) A_iB_j=\sum^{n}_{i=1}\sum^{n}_{j=1} g(x,i)g(x,j)\times A_iB_j \]

于是我们发现了 \(g\) 的关系:

\[g(x,i \oplus j) = g(x,i)g(x,j) \]

现在问题来了,与 \(i,j\) 相关的什么东西,使异或之后的值等于原来两值的乘积?

于是我们可以想到有人托梦给我奇偶性。

具体的,我们发现异或前后 \(1\) 的个数奇偶性不变。原因如下:

按每一位依次考虑。如果第 \(i\) 位异或后为 \(1\),那么原来必定有且仅有一个 \(1\)。个数不变

如果为 \(0\),要么是两个 \(0\),此时 \(1\) 的个数不变,要么是两个 \(1\),此时 \(1\) 的个数减 \(2\),奇偶性仍不变。

所以我们定义 \(g(x,i)=(-1)^{|i \bigcap x|}\)。那么上式就等价于:

\[(-1)^{|(i \oplus j) \bigcap x|} = (-1)^{|i \bigcap x|}(-1)^{|j \bigcap x|} \]

根据上面的推论,左右两边奇偶性不变,与 后无非是减去两个相同的数,奇偶性还是不变。

于是我们得出 \(FWT\) 的转移式:

\[FWT(A)_x=\sum^{n}_{i=1} (-1)^{|i \bigcap x|}A_i \]

如何求解

考虑模仿前两个 \(FWT\) 的形式,讨论最高位 \(i\)\(0\) 和为 \(1\) 两种情况。

原来最高位为 \(0\)\(FWT\) 后的前 \(2^{i-1}\) 个数最高位还是 \(0\)。由于 \(1 \And 0=0\),所以后 \(2^{i-1}\) 个数的贡献为正。前半部分答案为 \(FWT(A_0)+FWT(A_1)\)

\(FWT\) 后的后 \(2^{i-1}\) 个数最高位变成了 \(1\),此时 \(A_0\) 的贡献还是正(因为 \(1 \And 0=0\))。但是此时后半部分加了 \(1\),于是贡献要取反。后半部分答案为 \(FWT(A_0)-FWT(A_1)\)

所以我们得出:

\[FWT(A) = merge(FWT(A_0)+FWT(A_1),FWT(A_0)-FWT(A_1)) \]

当然,参照 或 FWT,我们可以写出不依赖递归的程序:

void XOR(mint *f){
    for(int o = 2, k = 1; o <= n; o <<= 1, k <<= 1)//具体意义参考 FWT 或
        for(int i = 0; i < n; i += o)
            for(int j = 0; j < k; j ++){
                mint x = f[i + j], y = f[i + j + k];
                f[i + j] = x + y;
                f[i + j + k] = x - y;
            }
}

求逆变换

实际上就是把贡献减去

\[IFWT(A) = merge(\frac{IFWT(A_0)+IFWT(A_1)}{2},\frac{IFWT(A_0)-IFWT(A_1))}{2} \]

显然这两个东西是可以合并的。于是我们可以得出模板的完整代码:

#include<bits/stdc++.h>
using namespace std;

#define forp(i, a, b) for(int i = (a);i <= (b);i ++)
#define forc(i, a, b) for(int i = (a);i >= (b);i --)

const int maxn = 6e5 + 5;
const int mod = 998244353;

int read(){
    int u;cin >> u;return u;
}

class mint{
    private : int v;
    public:
        mint(){}
        int operator()(void)const{
            return v;
        }
        mint (const int &u){ 
            v = u % mod; 
        }
        mint operator+(const mint &a) const{ 
            int x = a.v + v;
            if(x >= mod) return mint(x - mod);
            if(x < 0) return mint(x + mod);
            return x;
        }
        mint operator-(const mint& a)const{
			return v < a.v ? v - a.v + mod : v - a.v;
		}
        mint operator*(const mint &a) const{
            return mint((1ll * a.v * v) % mod);
        }
};

mint qpow(mint u, int v){
    mint ans = mint(1);
    while(v){
        if(v & 1) ans = ans * u;
        u = u * u;
        v >>= 1;
    }
    return ans;
}
mint inv2 = qpow(2, mod - 2);

int n;
mint A[maxn], B[maxn], C[maxn];
mint g[maxn];

void OR(mint *f, int type){
    for(int o = 2, k = 1; o <= n; o <<= 1, k <<= 1)
        for(int i = 0; i < n; i += o)
            for(int j = 0; j < k; j++){
                f[i + j + k] = f[i + j + k] + (f[i + j] * mint(type));
            }
}

void AND(mint *f, int type){
    for(int o = 2, k = 1; o <= n; o <<= 1, k <<= 1)
        for(int i = 0; i < n; i += o)
            for(int j = 0; j < k; j++)
                f[i + j] = f[i + j] + (f[i + j + k] * mint(type));
}

void XOR(mint *f, int type){
    for(int o = 2, k = 1; o <= n; o <<= 1, k <<= 1)
        for(int i = 0; i < n; i += o)
            for(int j = 0; j < k; j ++){
                mint x = f[i + j], y = f[i + j + k];
                f[i + j] = x + y;
                f[i + j + k] = x - y;
                if(type == -1){
                    f[i + j] = f[i + j] * inv2;
                    f[i + j + k] = f[i + j + k] * inv2;
                }
            }
}

signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);

    n = (1 << read());
    forp(i, 0, n - 1) A[i] = mint(read());
    forp(i, 0, n - 1) B[i] = mint(read());

    OR(A, 1);OR(B, 1);
    forp(i, 0, n - 1) C[i] = (A[i] * B[i]);
    OR(C, -1);
    forp(i, 0, n - 1) cout << C[i]() << ' ';
    cout << endl;
    OR(A, -1);OR(B, -1);

    AND(A, 1);AND(B, 1);
    forp(i, 0, n - 1) C[i] = (A[i] * B[i]);
    AND(C, -1);
    forp(i, 0, n - 1) cout << C[i]() << ' ';
    cout << endl;
    AND(A, -1);AND(B, -1);

    XOR(A, 1);XOR(B, 1);
    forp(i, 0, n - 1) C[i] = (A[i] * B[i]);
    XOR(C, -1);
    forp(i, 0, n - 1) cout << C[i]() << ' ';
    cout << endl;
    XOR(A, -1);XOR(B, -1);
    return 0;
}

大概就是这样。。。应用也许会另外开坑吧。


后记

感谢 xht 的博客,从这篇博客里我学到了 FWT 的基础知识。

感谢同校大佬 yllcm 为本人解释符号与定义。

感谢万能的U群群友 Untitled_unrevised 解释 FWT 的目的。

感谢万能的U群群友 rqy 学姐与 樱初音斗橡皮 解释为什么异或 FWT 是线性变换顺便发现了我在线性代数方面的巨大缺口

posted @ 2023-03-17 15:54  _maze  阅读(0)  评论(0编辑  收藏  举报
回帖
    张三

    张三 (王者 段位)

    921 积分 (2)粉丝 (41)源码

     

    温馨提示

    亦奇源码

    最新会员