MapReduceShuffle源码解读

博客 分享
0 162
张三
张三 2023-03-26 11:26:43
悬赏:0 积分 收藏

MapReduce Shuffle源码解读

MapReduce Shuffle源码解读

相信很多小伙伴都背过shuffle的八股文,但一直不是很理解shuffle的过程,这次我通过源码来解读下shuffle过程,加深对shuffle的理解,但是我自己还是个菜鸟,这篇博客也是参考了很多资料,如果有不对的地方,请指正。

shuffle是Map Task和 Reduce Task之间的一个阶段,本质上是一个跨节点跨进程间的数据传输,网上的资料也把MapReduce的过程细分为六个阶段:

  1. Collect 2. Spill 3.Merge 4.Copy 5.Merge 6. Sort

看过源码之后,这几个阶段划分的还是很有道理的,首先看看官网上对shuffle的描述图,有个印象

img

Map

首先,我们先来看看Map阶段的代码,先找到Map Task的入口(org/apache/hadoop/mapred/MapTask.java)的run方法,当map task启动时都会执行这个方法。

@Override
public void run(final JobConf job, final TaskUmbilicalProtocol umbilical)
  throws IOException, ClassNotFoundException, InterruptedException {
  this.umbilical = umbilical;   // 一个taskAttempt的代理,后面比较多的地方使用

  if (isMapTask()) {
    // If there are no reducers then there won't be any sort. Hence the map 
    // phase will govern the entire attempt's progress.
    if (conf.getNumReduceTasks() == 0) {
      mapPhase = getProgress().addPhase("map", 1.0f);
    } else {
      // If there are reducers then the entire attempt's progress will be 
      // split between the map phase (67%) and the sort phase (33%).
      mapPhase = getProgress().addPhase("map", 0.667f);
      sortPhase  = getProgress().addPhase("sort", 0.333f);
    }
  }

  // 启动任务状态汇报器,其内部有周期性的汇报线程(状态汇报和心跳)
  TaskReporter reporter = startReporter(umbilical);

  boolean useNewApi = job.getUseNewMapper();
  initialize(job, getJobID(), reporter, useNewApi);  // 重要方法,可以认为初始化task启动的一切资源了

  // check if it is a cleanupJobTask
  if (jobCleanup) {
    runJobCleanupTask(umbilical, reporter);
    return;
  }
  if (jobSetup) {
    runJobSetupTask(umbilical, reporter);
    return;
  }
  if (taskCleanup) {
    runTaskCleanupTask(umbilical, reporter);
    return;
  }

  if (useNewApi) {
    runNewMapper(job, splitMetaInfo, umbilical, reporter); // 核心代码,点进去
  } else {
    runOldMapper(job, splitMetaInfo, umbilical, reporter);
  }
  done(umbilical, reporter);
}

这里umbilical比较难理解,我其实也没怎么搞懂,看名字是个协议,这里贴出它的注释

任务子进程用于联系其父进程的协议。父进程是一个守护进程,它轮询中央主进程以获取新的map或reduce Task,并将其作为子进程(Child)运行。孩子和父母之间的所有通信都是通过此协议进行的

看起来是个RPC,这个父进程我不是很清楚,我理解是在v1版本的话,这个可能是taskTracker,如果在v2版本(yarn)可能是ApplicationMaster,如果不对,请大神解答我的疑问。

进入runNewMapper方法

@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,
                  final TaskSplitIndex splitIndex,
                  final TaskUmbilicalProtocol umbilical,
                  TaskReporter reporter
                  ) throws IOException, ClassNotFoundException,
                           InterruptedException {
  // make a task context so we can get the classes  创建Task的上下文环境
  org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
    new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, 
                                                                getTaskID(),
                                                                reporter);
  // make a mapper  通过反射创建mapper
  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
    (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
      ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
  // make the input format   通过反射创建inputFormat,来读取数据
  org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
    (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
      ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
  // rebuild the input split // 获取切片信息
  org.apache.hadoop.mapreduce.InputSplit split = null;
  split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
      splitIndex.getStartOffset());
  LOG.info("Processing split: " + split);

  org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
    new NewTrackingRecordReader<INKEY,INVALUE>   //通过反射创建RecordReader。InputFormat是通过RecordReader来读取数据,这个也是大学问,在job submit时很关键
      (split, inputFormat, reporter, taskContext);
  
  job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
  org.apache.hadoop.mapreduce.RecordWriter output = null;
  
  // get an output object
  if (job.getNumReduceTasks() == 0) { // 如果没有reduce任务,则直接写入磁盘
    output = 
      new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
  } else { //  核心代码,创建collector收集器  ,点进去
    output = new NewOutputCollector(taskContext, job, umbilical, reporter);
  }

  org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE> 
  mapContext = 
    new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(), 
        input, output, 
        committer, 
        reporter, split);

  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context 
      mapperContext = 
        new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
            mapContext);

  try {
    input.initialize(split, mapperContext);
    mapper.run(mapperContext);  // 调用我们自己实现的mapper类
    mapPhase.complete();
    setPhase(TaskStatus.Phase.SORT);
    statusUpdate(umbilical);
    input.close();
    input = null;
    output.close(mapperContext);
    output = null;
  } finally {
    closeQuietly(input);
    closeQuietly(output, mapperContext);
  }
}

马上进入collect阶段了,点进 NewOutputCollector,看看如何创建Collector

  private class NewOutputCollector<K,V>
    extends org.apache.hadoop.mapreduce.RecordWriter<K,V> {
    private final MapOutputCollector<K,V> collector;
    private final org.apache.hadoop.mapreduce.Partitioner<K,V> partitioner;
    private final int partitions;

    @SuppressWarnings("unchecked")
    NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,
                       JobConf job,
                       TaskUmbilicalProtocol umbilical,
                       TaskReporter reporter
                       ) throws IOException, ClassNotFoundException {
      collector = createSortingCollector(job, reporter);
      partitions = jobContext.getNumReduceTasks();  // partitions数等于reduce任务数
      if (partitions > 1) {
        partitioner = (org.apache.hadoop.mapreduce.Partitioner<K,V>)
          ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);
      } else {
        partitioner = new org.apache.hadoop.mapreduce.Partitioner<K,V>() {
          @Override
          public int getPartition(K key, V value, int numPartitions) {
            return partitions - 1;
          }
        };
      }
    }

    @Override
    public void write(K key, V value) throws IOException, InterruptedException {
      collector.collect(key, value, // 向对应分区的环形缓冲区写入(k,v)
                        partitioner.getPartition(key, value, partitions));
    }

    @Override
    public void close(TaskAttemptContext context
                      ) throws IOException,InterruptedException {
      try {
        collector.flush();//核心方法,将数据刷出去。
      } catch (ClassNotFoundException cnf) {
        throw new IOException("can't find class ", cnf);
      }
      collector.close();
    }
  }

点进 creareSortingCollector

@SuppressWarnings("unchecked")
private <KEY, VALUE> MapOutputCollector<KEY, VALUE>  // collector是map 类型
        createSortingCollector(JobConf job, TaskReporter reporter)
  throws IOException, ClassNotFoundException {
  MapOutputCollector.Context context =
    new MapOutputCollector.Context(this, job, reporter);

  Class<?>[] collectorClasses = job.getClasses(  // 获取Map Collector的类型
    JobContext.MAP_OUTPUT_COLLECTOR_CLASS_ATTR, MapOutputBuffer.class);  // 说到底还是MapOutputBuffer类型
  int remainingCollectors = collectorClasses.length;
  Exception lastException = null;
  for (Class clazz : collectorClasses) {
    try {
      if (!MapOutputCollector.class.isAssignableFrom(clazz)) {  // MapOutputCollector是不是clazz或者其父类
        throw new IOException("Invalid output collector class: " + clazz.getName() +
          " (does not implement MapOutputCollector)");
      }
      Class<? extends MapOutputCollector> subclazz =
        clazz.asSubclass(MapOutputCollector.class);
      LOG.debug("Trying map output collector class: " + subclazz.getName());
      MapOutputCollector<KEY, VALUE> collector =
        ReflectionUtils.newInstance(subclazz, job); //  创建collector
      collector.init(context);   // 初始化 点进去
      LOG.info("Map output collector class = " + collector.getClass().getName());
      return collector;
    } catch (Exception e) {
      String msg = "Unable to initialize MapOutputCollector " + clazz.getName();
      if (--remainingCollectors > 0) {
        msg += " (" + remainingCollectors + " more collector(s) to try)";
      }
      lastException = e;
      LOG.warn(msg, e);
    }
  }
}

这个init方法十分的关键,不仅涉及了环形缓冲区,还涉及了Spill

public void init(MapOutputCollector.Context context    
                 // 这个方法中,主要就是对收集器对象进行一些初始化
                ) throws IOException, ClassNotFoundException {
  job = context.getJobConf();
  reporter = context.getReporter();
  mapTask = context.getMapTask();
  mapOutputFile = mapTask.getMapOutputFile();
  sortPhase = mapTask.getSortPhase();
  spilledRecordsCounter = reporter.getCounter(TaskCounter.SPILLED_RECORDS);
  partitions = job.getNumReduceTasks();
  rfs = ((LocalFileSystem)FileSystem.getLocal(job)).getRaw();

  //sanity checks
  final float spillper =
    job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);  // 设置环形缓冲区溢写比例为0.8
  final int sortmb = job.getInt(MRJobConfig.IO_SORT_MB,
      MRJobConfig.DEFAULT_IO_SORT_MB);  //  默认环形缓冲区大小为100M
  indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,
                                     INDEX_CACHE_MEMORY_LIMIT_DEFAULT);
  if (spillper > (float)1.0 || spillper <= (float)0.0) {
    throw new IOException("Invalid \"" + JobContext.MAP_SORT_SPILL_PERCENT +
        "\": " + spillper);
  }
  if ((sortmb & 0x7FF) != sortmb) {
    throw new IOException(
        "Invalid \"" + JobContext.IO_SORT_MB + "\": " + sortmb);
  }

  // 排序,默认使用的快排
  // 获取到排序对象,在数据由环形缓冲区溢写到磁盘中前
  // 并且排序是针对索引的,并非对数据进行排序。
  sorter = ReflectionUtils.newInstance(job.getClass(
               MRJobConfig.MAP_SORT_CLASS, QuickSort.class,
               IndexedSorter.class), job);
  // buffers and accounting
  // 对环形缓冲区初始化,大名鼎鼎的环形缓冲区本质上是个byte数组
  int maxMemUsage = sortmb << 20;  // 将MB转换为Bytes
  // 一对kv数据有四个元数据MATE,分别是valstart,keystart,partitions,vallen,都是int类型
  // METASIZE 就是4个int转换成byte就是4*4
  maxMemUsage -= maxMemUsage % METASIZE;  // 计算METE数据存储的大小
  kvbuffer = new byte[maxMemUsage]; // 元数据数组  以byte为单位
  bufvoid = kvbuffer.length;
  kvmeta = ByteBuffer.wrap(kvbuffer)
     .order(ByteOrder.nativeOrder())
     .asIntBuffer();  // 将byte单位的kvbuffer转换成int单位的kvmeta
  setEquator(0);
  bufstart = bufend = bufindex = equator;
  kvstart = kvend = kvindex;
  // kvmeta中存放元数据实体的最大个数
  maxRec = kvmeta.capacity() / NMETA;
  softLimit = (int)(kvbuffer.length * spillper); // buffer 溢写的阈值
  bufferRemaining = softLimit;
  LOG.info(JobContext.IO_SORT_MB + ": " + sortmb);
  LOG.info("soft limit at " + softLimit);
  LOG.info("bufstart = " + bufstart + "; bufvoid = " + bufvoid);
  LOG.info("kvstart = " + kvstart + "; length = " + maxRec);

  // k/v serialization
  comparator = job.getOutputKeyComparator();
  keyClass = (Class<K>)job.getMapOutputKeyClass();
  valClass = (Class<V>)job.getMapOutputValueClass();
  serializationFactory = new SerializationFactory(job);
  keySerializer = serializationFactory.getSerializer(keyClass);
  keySerializer.open(bb);  // 将key写入bb中 blockingbuffer
  valSerializer = serializationFactory.getSerializer(valClass);
  valSerializer.open(bb); // 将value写入bb中

  // output counters
  mapOutputByteCounter = reporter.getCounter(TaskCounter.MAP_OUTPUT_BYTES);
  mapOutputRecordCounter =
    reporter.getCounter(TaskCounter.MAP_OUTPUT_RECORDS);
  fileOutputByteCounter = reporter
      .getCounter(TaskCounter.MAP_OUTPUT_MATERIALIZED_BYTES);

  // compression  压缩器,减少shuffle数据量
  if (job.getCompressMapOutput()) {
    Class<? extends CompressionCodec> codecClass =
      job.getMapOutputCompressorClass(DefaultCodec.class);
    codec = ReflectionUtils.newInstance(codecClass, job);
  } else {
    codec = null;
  }

  // combiner
  // combiner  map端的reduce
  final Counters.Counter combineInputCounter =
    reporter.getCounter(TaskCounter.COMBINE_INPUT_RECORDS);
  combinerRunner = CombinerRunner.create(job, getTaskID(), 
                                         combineInputCounter,
                                         reporter, null);
  if (combinerRunner != null) {
    final Counters.Counter combineOutputCounter =
      reporter.getCounter(TaskCounter.COMBINE_OUTPUT_RECORDS);
    combineCollector= new CombineOutputCollector<K,V>(combineOutputCounter, reporter, job);
  } else {
    combineCollector = null;
  }
  // 溢写线程
  spillInProgress = false;
  minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);
  spillThread.setDaemon(true); //  是个守护线程
  spillThread.setName("SpillThread"); //
  spillLock.lock();
  try {
    spillThread.start();  // 启动一个spill线程
    while (!spillThreadRunning) {
      spillDone.await();
    }
  } catch (InterruptedException e) {
    throw new IOException("Spill thread failed to initialize", e);
  } finally {
    spillLock.unlock();
  }
  if (sortSpillException != null) {
    throw new IOException("Spill thread failed to initialize",
        sortSpillException);
  }
}

从这个类,我们可以看到环形缓冲区的一些初始化过程,如大小为100M,开始溢写的比例是0.8,实际上,Collector是一个宏观的概念,本质上就是一个MapOutputBuffer对象。

后面还启动了Spill线程,不过如果是第一次进去会被阻塞这里我们先按下不表。

至此,一些map开始之前的工作已经准备好了,至于它是怎么工作的我们可以从我们写的mapper中write方法debug进去,发现其实还是NewOutputCollector中定义的write方法,点进去是MapOutputBuffer的collect方法

public synchronized void collect(K key, V value, final int partition
                                 ) throws IOException {
  reporter.progress();
  if (key.getClass() != keyClass) {
    throw new IOException("Type mismatch in key from map: expected "
                          + keyClass.getName() + ", received "
                          + key.getClass().getName());
  }
  if (value.getClass() != valClass) {
    throw new IOException("Type mismatch in value from map: expected "
                          + valClass.getName() + ", received "
                          + value.getClass().getName());
  }
  if (partition < 0 || partition >= partitions) {
    throw new IOException("Illegal partition for " + key + " (" +
        partition + ")");
  }
  checkSpillException();
  bufferRemaining -= METASIZE;  // 新数据collect时,先将元数据长度前去,之后判断
  if (bufferRemaining <= 0) { // 说明已经超过阈值了
    // start spill if the thread is not running and the soft limit has been
    // reached
    spillLock.lock();
    try {
      do {
        // 首次spill时,spillInProgress是false
        if (!spillInProgress) {
          final int kvbidx = 4 * kvindex; // 单位是byte
          final int kvbend = 4 * kvend;  // 单位是byte
          // serialized, unspilled bytes always lie between kvindex and
          // bufindex, crossing the equator. Note that any void space
          // created by a reset must be included in "used" bytes
          final int bUsed = distanceTo(kvbidx, bufindex);  // 剩下可以写入的空间大小
          final boolean bufsoftlimit = bUsed >= softLimit;  // true说明已经超过softLimit了
          if ((kvbend + METASIZE) % kvbuffer.length !=
              equator - (equator % METASIZE)) {
            // spill finished, reclaim space
            resetSpill();
            bufferRemaining = Math.min(
                distanceTo(bufindex, kvbidx) - 2 * METASIZE,
                softLimit - bUsed) - METASIZE;  // 这里是重新选择equator吧,但是计算方式不了解
            continue;
          } else if (bufsoftlimit && kvindex != kvend) {
            // spill records, if any collected; check latter, as it may
            // be possible for metadata alignment to hit spill pcnt
            startSpill();  //开始溢写,里面唤醒spill线程  
            final int avgRec = (int)
              (mapOutputByteCounter.getCounter() /
              mapOutputRecordCounter.getCounter());
            // leave at least half the split buffer for serialization data
            // ensure that kvindex >= bufindex
            final int distkvi = distanceTo(bufindex, kvbidx);
            final int newPos = (bufindex +
              Math.max(2 * METASIZE - 1,
                      Math.min(distkvi / 2,
                               distkvi / (METASIZE + avgRec) * METASIZE)))
              % kvbuffer.length;
            setEquator(newPos);
            bufmark = bufindex = newPos;
            final int serBound = 4 * kvend;
            // bytes remaining before the lock must be held and limits
            // checked is the minimum of three arcs: the metadata space, the
            // serialization space, and the soft limit
            bufferRemaining = Math.min(
                // metadata max
                distanceTo(bufend, newPos),
                Math.min(
                  // serialization max
                  distanceTo(newPos, serBound),
                  // soft limit
                  softLimit)) - 2 * METASIZE;
          }
        }
      } while (false);   // 这是什么写法?????
    } finally {
      spillLock.unlock();
    }
  }
  // 直接写入buffer,不涉及spill
  try {
    // serialize key bytes into buffer
    int keystart = bufindex;
    keySerializer.serialize(key);
    // key所占空间被bufvoid分隔,则移动key,
    // 将其值放在连续的空间中便于sort时key的对比
    if (bufindex < keystart) {
      // wrapped the key; must make contiguous
      bb.shiftBufferedKey();
      keystart = 0;
    }
    // serialize value bytes into buffer
    final int valstart = bufindex;
    valSerializer.serialize(value);
    // It's possible for records to have zero length, i.e. the serializer
    // will perform no writes. To ensure that the boundary conditions are
    // checked and that the kvindex invariant is maintained, perform a
    // zero-length write into the buffer. The logic monitoring this could be
    // moved into collect, but this is cleaner and inexpensive. For now, it
    // is acceptable.
    bb.write(b0, 0, 0);

    // the record must be marked after the preceding write, as the metadata
    // for this record are not yet written
    int valend = bb.markRecord();

    mapOutputRecordCounter.increment(1);
    mapOutputByteCounter.increment(
        distanceTo(keystart, valend, bufvoid)); //计数器+1

    // write accounting info
    kvmeta.put(kvindex + PARTITION, 
              );
    kvmeta.put(kvindex + KEYSTART, keystart);
    kvmeta.put(kvindex + VALSTART, valstart);
    kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));
    // advance kvindex
    kvindex = (kvindex - NMETA + kvmeta.capacity()) % kvmeta.capacity();
  } catch (MapBufferTooSmallException e) {
    LOG.info("Record too large for in-memory buffer: " + e.getMessage());
    spillSingleRecord(key, value, partition);  // 长record就直接写入磁盘
    mapOutputRecordCounter.increment(1);
    return;
  }
}

这里首先最重要的方法就是第46行的startSpill()方法,这里点进去会发现一个spillReady.signal(),这就是唤醒之前因spillReady.await()方法阻塞的spill线程,这里的spillReady就是可重入锁,这里spill开始正式工作,这里涉及了环形缓冲区如何写和如何读,会比较抽象,我之后再写一篇关于环形缓冲区的文章。

这里代码就是Collect,本质上就是map端将输出的(k,v)数据和它的元数据写入MapOutputBuffer中。

此外,这个代码里也有唤醒spill线程的代码,找到SpillThread的run方法,很明显里面有个很重要的方法sortAndSpill

private void sortAndSpill() throws IOException, ClassNotFoundException,
                                   InterruptedException {
  //approximate the length of the output file to be the length of the
  //buffer + header lengths for the partitions
  final long size = distanceTo(bufstart, bufend, bufvoid) +
              partitions * APPROX_HEADER_LENGTH;  // 写出长度
  FSDataOutputStream out = null;
  FSDataOutputStream partitionOut = null;
  try {
    // create spill file
    final SpillRecord spillRec = new SpillRecord(partitions);
    final Path filename =
        mapOutputFile.getSpillFileForWrite(numSpills, size);// 默认是output/spillx.out
    out = rfs.create(filename);// 创建分区文件

    final int mstart = kvend / NMETA;
    final int mend = 1 + // kvend is a valid record
      (kvstart >= kvend
      ? kvstart
      : kvmeta.capacity() + kvstart) / NMETA;
    // 对元数据进行排序,先按照partition进行排序,再按照key值进行排序
    // 二次排序,排的是元数据部分
    sorter.sort(MapOutputBuffer.this, mstart, mend, reporter);
    int spindex = mstart;
    final IndexRecord rec = new IndexRecord();
    final InMemValBytes value = new InMemValBytes();
    for (int i = 0; i < partitions; ++i) {//循环分区
      // 溢写时的临时文件 类型是IFile
      IFile.Writer<K, V> writer = null;
      try {
        long segmentStart = out.getPos();
        partitionOut = CryptoUtils.wrapIfNecessary(job, out, false);
        writer = new Writer<K, V>(job, partitionOut, keyClass, valClass, codec,
                                  spilledRecordsCounter);
        if (combinerRunner == null) {
          // spill directly
          DataInputBuffer key = new DataInputBuffer();
          // 写入相同的partition数据
          while (spindex < mend &&
              kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) {
            final int kvoff = offsetFor(spindex % maxRec);
            int keystart = kvmeta.get(kvoff + KEYSTART);
            int valstart = kvmeta.get(kvoff + VALSTART);
            key.reset(kvbuffer, keystart, valstart - keystart);
            getVBytesForOffset(kvoff, value);
            writer.append(key, value);
            ++spindex;
          }
        } else {    // 进行combiner,避免小文件问题
          int spstart = spindex;
          while (spindex < mend &&
              kvmeta.get(offsetFor(spindex % maxRec)
                        + PARTITION) == i) {
            ++spindex;
          }
          // Note: we would like to avoid the combiner if we've fewer
          // than some threshold of records for a partition
          if (spstart != spindex) {
            combineCollector.setWriter(writer);
            RawKeyValueIterator kvIter =
              new MRResultIterator(spstart, spindex);
            combinerRunner.combine(kvIter, combineCollector);
          }
        }

        // close the writer
        writer.close();  ///  将文件写入本地磁盘中,不是HDFS上
        if (partitionOut != out) {
          partitionOut.close();
          partitionOut = null;
        }

        // record offsets
        // 记录当前partition i的信息写入索文件rec中
        rec.startOffset = segmentStart;
        rec.rawLength = writer.getRawLength() + CryptoUtils.cryptoPadding(job);
        rec.partLength = writer.getCompressedLength() + CryptoUtils.cryptoPadding(job);
        //spillRec中存放了spill中partition的信息
        spillRec.putIndex(rec, i);

        writer = null;
      } finally {
        if (null != writer) writer.close();
      }
    }

    if (totalIndexCacheMemory >= indexCacheMemoryLimit) {
      // create spill index file
      Path indexFilename =
          mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions
              * MAP_OUTPUT_INDEX_RECORD_LENGTH);
      spillRec.writeToFile(indexFilename, job);  // 将内存中的index文件写入磁盘
    } else {
      indexCacheList.add(spillRec);
      totalIndexCacheMemory +=
        spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;
    }
    LOG.info("Finished spill " + numSpills);
    ++numSpills;
  } finally {
    if (out != null) out.close();
    if (partitionOut != null) {
      partitionOut.close();
    }
  }
}

很明显,spill有两个临时文件生成,一个是(k,v)文件,它保存在默认路径是output/spill{x}.out文件中,注意,这段代码里并没有明显的将(k,v)文件写入磁盘的代码,这些代码在writer.close()中实现。而另一个明显写入磁盘的是spillRec.writeToFile(indexFilename, job),这个存放的每个partition的index。

在SpillThread在辛辛苦苦进行sortAndSpill工作时,map Task 也不断地产生新(k,v)写入MapOutputBuffer中,环形缓冲区的读线程和写线程同时工作!!怎么避免冲突呢?答案是反向写。

红色箭头是写(k,v)数据,蓝色箭头是写元数据,紫色是预留的百分之20的空间不能写,绿色是已经写入的数据部分,正在被spill线程读取操作。

至此,spillsort阶段算是大功告成,那么还有个疑问,如果MapOutPutBuffer还有部分数据,但这部分数据并没有达到spill的标准,怎么办呢?还是回到NewOutputCollector部分中close方法,里面有MapOutputBuffer的flush方法会解决这个问题。

最后就是Map Task中Shuffle过程的最后一个阶段Merge,这部分有点多就不贴代码了,感兴趣的同学可以查看MapOutputBuffer中mergeParts方法,这个方法在上面的flush方法里调用,该作用是合并spill阶段产生出来的out文件和index文件。

Merge过程目的很简单,但是过程确实很复杂。首先,Merge过程会扫描目录获取out文件的地址,存放一个数组中,同时也会获得index文件,存放到另一个数组中。好奇的同学可能再想既然又要读入到内存中,当初为啥要刷进磁盘里呢,这不是闲着没事干嘛,确实,这是MapReduce的缺陷,太过于批处理了,磁盘IO也限制了它的其他可能性,比如机器学习需要反复迭代,MapReduce就做不了这个,但是这一步确实很有必要的,因为早期内存很贵,不是每个人都是土豪的,考虑到OOM的风险,把所有的(K,V)数据和index数据刷进磁盘是非常有必要的,但是后面又可以全读入内存,那是因为缓存缓冲区这个大东西已经不再使用,内存就富裕起来了。

同时,Merge过程还涉及到归并算法,这个并不是简单的归并过程,而是一个很复杂的过程,因为考虑到一个partition并不只存在一种key,所以源码里有着相当复杂的过程同时注释也很迷惑人,注释里有优先队列和Heap的字样,看代码的时候可能以为采用了堆排序,有兴趣的同学可以看看,并不是太重要(ps我也看得一知半解)。

Reduce

Reduce部分我就长话短说,只看重点了。

同样,第一步就是查看 Reduce Task的run方法,这是启动redduce逻辑的自动过程

 public void run(JobConf job, final TaskUmbilicalProtocol umbilical)
   throws IOException, InterruptedException, ClassNotFoundException {
   job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());

   if (isMapOrReduce()) { // reduce的三个阶段
     copyPhase = getProgress().addPhase("copy");
     sortPhase  = getProgress().addPhase("sort");
     reducePhase = getProgress().addPhase("reduce");
   }
   // start thread that will handle communication with parent
   // 启动任务状态汇报器,其内部有周期性的汇报线程(状态汇报和心跳)
   TaskReporter reporter = startReporter(umbilical);
   
   boolean useNewApi = job.getUseNewReducer();
   initialize(job, getJobID(), reporter, useNewApi);//核心代码,初始化任务

   // check if it is a cleanupJobTask
   if (jobCleanup) {
     runJobCleanupTask(umbilical, reporter);
     return;
   }
   if (jobSetup) {
     runJobSetupTask(umbilical, reporter);
     return;
   }
   if (taskCleanup) {
     runTaskCleanupTask(umbilical, reporter);
     return;
   }
   
   // Initialize the codec
   codec = initCodec();
   RawKeyValueIterator rIter = null;
   ShuffleConsumerPlugin shuffleConsumerPlugin = null;
   
   Class combinerClass = conf.getCombinerClass();
   CombineOutputCollector combineCollector = 
     (null != combinerClass) ? 
    new CombineOutputCollector(reduceCombineOutputCounter, reporter, conf) : null;

   Class<? extends ShuffleConsumerPlugin> clazz =
         job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class);
// 设置shuffle插件
   shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);
   LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);

   ShuffleConsumerPlugin.Context shuffleContext = 
     new ShuffleConsumerPlugin.Context(getTaskID(), job, FileSystem.getLocal(job), umbilical, 
                 super.lDirAlloc, reporter, codec, 
                 combinerClass, combineCollector, 
                 spilledRecordsCounter, reduceCombineInputCounter,
                 shuffledMapsCounter,
                 reduceShuffleBytes, failedShuffleCounter,
                 mergedMapOutputsCounter,
                 taskStatus, copyPhase, sortPhase, this,
                 mapOutputFile, localMapFiles);
   shuffleConsumerPlugin.init(shuffleContext);
   // 执行shuffle过程中的远程数据拉取,在拉取的过程中
   // 内部 启动 map-completion event fetch线程 获取map端完成的event信息
   // 在开启默认5个的fetch 线程 拉取数据,里面核心函数就是一直点进去是doShuffle,有两种一种是in-memory另一种就是on-disk
   // 超出shuffle内存就merge到disk
   // shuffle插件内部有个mergeMangager 会在合适的时候就是快超过shuffle内存缓存的时候,启动merge线程

   // 这个表面是一次网络IO,本质上是一个RPC,通过umbilical代理获取已经完成的MapTask任务的taskAttempt的ID,存入schedule中,为后面shuffle做准备

   rIter = shuffleConsumerPlugin.run();

   // free up the data structures
   // 一个sort set,是TreeSet数据结构·
   mapOutputFilesOnDisk.clear();
   
   sortPhase.complete();                         // sort is complete
   setPhase(TaskStatus.Phase.REDUCE); 
   statusUpdate(umbilical);
   Class keyClass = job.getMapOutputKeyClass();
   Class valueClass = job.getMapOutputValueClass();
   RawComparator comparator = job.getOutputValueGroupingComparator();

   if (useNewApi) {
     runNewReducer(job, umbilical, reporter, rIter, comparator, 
                   keyClass, valueClass); // 执行reduce操作,(用户定义的逻辑)
   } else {
     runOldReducer(job, umbilical, reporter, rIter, comparator, 
                   keyClass, valueClass);
   }

   shuffleConsumerPlugin.close();
   done(umbilical, reporter);
 }

Reduce Task的重点比较清晰,就是57行的初始化shuffleConsumerPlugin这个Shuffle插件,以及66行运行这个插件,让他拉取数据。

初始化shuffle插件过程中,有两个组件一个是schedule调度器,另一个就是MergeManager,这个MergeManger有大用处。

接下来查看run方法

public RawKeyValueIterator run() throws IOException, InterruptedException {
  // Scale the maximum events we fetch per RPC call to mitigate OOM issues
  // on the ApplicationMaster when a thundering herd of reducers fetch events
  // TODO: This should not be necessary after HADOOP-8942
  int eventsPerReducer = Math.max(MIN_EVENTS_TO_FETCH,
      MAX_RPC_OUTSTANDING_EVENTS / jobConf.getNumReduceTasks());
  int maxEventsToFetch = Math.min(MAX_EVENTS_TO_FETCH, eventsPerReducer);

  // Start the map-completion events fetcher thread
  // 启动 一个 event fetcher线程 获取map端完成的event信息
  final EventFetcher<K,V> eventFetcher = 
    new EventFetcher<K,V>(reduceId, umbilical, scheduler, this,
        maxEventsToFetch);
  eventFetcher.start();
  
  // Start the map-output fetcher threads  启动fetch线程
  // fetch 线程 远程从map端拉取对应partition的数据
  boolean isLocal = localMapFiles != null;
  final int numFetchers = isLocal ? 1 :
    jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);
  Fetcher<K,V>[] fetchers = new Fetcher[numFetchers];
  if (isLocal) {
    fetchers[0] = new LocalFetcher<K, V>(jobConf, reduceId, scheduler,
        merger, reporter, metrics, this, reduceTask.getShuffleSecret(),
        localMapFiles);
    fetchers[0].start();
  } else {
    for (int i=0; i < numFetchers; ++i) {
      fetchers[i] = new Fetcher<K,V>(jobConf, reduceId, scheduler, merger, 
                                     reporter, metrics, this, 
                                     reduceTask.getShuffleSecret());
      fetchers[i].start();
    }
  }
  
  // Wait for shuffle to complete successfully
  while (!scheduler.waitUntilDone(PROGRESS_FREQUENCY)) {
    reporter.progress();
    
    synchronized (this) {
      if (throwable != null) {
        throw new ShuffleError("error in shuffle in " + throwingThreadName,
                               throwable);
      }
    }
  }

  // Stop the event-fetcher thread
  eventFetcher.shutDown();
  
  // Stop the map-output fetcher threads
  for (Fetcher<K,V> fetcher : fetchers) {
    fetcher.shutDown();
  }
  
  // stop the scheduler
  scheduler.close();

  copyPhase.complete(); // copy is already complete
  taskStatus.setPhase(TaskStatus.Phase.SORT);
  reduceTask.statusUpdate(umbilical);

  // Finish the on-going merges...
  RawKeyValueIterator kvIter = null;
  try {
    kvIter = merger.close();
  } catch (Throwable e) {
    throw new ShuffleError("Error while doing final merge " , e);
  }

  // Sanity check
  synchronized (this) {
    if (throwable != null) {
      throw new ShuffleError("error in shuffle in " + throwingThreadName,
                             throwable);
    }
  }
  
  return kvIter;
}

重点就是两线程,一种是Event fetch,另一种是fetch线程

首先,event fetch线程的作用是获取TaskAttempt的ID等信息,存入schedule中,方面以后Shuffle尤其是sort时使用,本质上这是个RPC,注意看event fetch初始化时的参数里有个umbilical代理对象。

而fetch线程的工作原理是通过HTTP向各个Map任务拖取它所需要的数据(至于HTTP和RPC的区别有兴趣的同学可以查查),里面最核心的方法是doShuffle(一直点进去才能找到这个),在Copy的同时还会MergeSort。doShuffle它有两个实现,一个是In-memory,另一个是On-disk有两个实现(同样的,Merge也分为这两种)。是基于考虑到拉取相同的key值可能有很大的数据量,那么有必要写入磁盘中了,但为了减少这种情况,在达到缓存区(默认是64K)阈值的时候会将数据merge(如果太大的话就在磁盘中merge),Merge的工作就是交给Shuffle插件的MergeManager管理。

所以,copy和Merge和Sort是重叠过程的。

至此,Shuffle部分的源码基本讲解完成。

参考资料

  1. MapReduce ReduceTask源码解析

  2. MapReduce中的shuffle详解

  3. 环形缓冲区

posted @ 2023-03-26 11:00  不要给我歪!  阅读(0)  评论(0编辑  收藏  举报
回帖
    张三

    张三 (王者 段位)

    921 积分 (2)粉丝 (41)源码

     

    温馨提示

    亦奇源码

    最新会员