LeetCode 双周赛 107(2023/06/24)滑动窗口与离散化
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 [BaguTree Pro] 知识星球提问。
T1. 最大字符串配对数目(Easy)
- 标签:散列表
T2. 构造最长的新字符串(Medium)
- 标签:模拟
T3. 字符串连接删减字母(Medium)
- 标签:状态 DP
T4. 统计没有收到请求的服务器数目(Medium)
- 标签:排序、滑动窗口、离散化
T1. 最大字符串配对数目(Easy)
https://leetcode.cn/problems/find-maximum-number-of-string-pairs/
题解(散列表)
题目说明所有字符串不相同,因此我们可以枚举每个字符串,检查其反转是否存在,模板类似于两数之和;
- 扩展:如果字符串存在重复,可以将配对的字符分组再按两两配对计算;
- 扩展:如果字符串长度很长会存在散列冲突,可以调整 U 为较大素数。
class Solution {
fun maximumNumberOfStringPairs(words: Array<String>): Int {
val U = 26
val set = HashSet<Int>()
var ret = 0
for (word in words) {
if (word.length != 2) continue
val key = (word[0] - 'a') * U + (word[1] - 'a')
val reversedKey = (word[1] - 'a') * U + (word[0] - 'a')
if (set.contains(reversedKey)) ret ++
set.add(key)
}
return ret
}
}
复杂度分析:
- 时间复杂度:$O(L)$ 需要访问每个单词的每个字符;
- 空间复杂度:$O(n)$ 散列表空间。
T2. 构造最长的新字符串(Medium)
https://leetcode.cn/problems/construct-the-longest-new-string/
题解(模拟)
根据题意分析,我们总可以将 ABAB..ABAB 置于结果中间,再将 AA 或 BB 置于两边。此时所有 AB 都可选,而 AA BB 最多只能选择较少者 + 1,分类讨论即可:
class Solution {
fun longestString(x: Int, y: Int, z: Int): Int {
return if (x == y) {
(x + y + z) * 2
} else {
(Math.min(x, y) * 2 + 1 + z) * 2
}
}
}
复杂度分析:
- 时间复杂度:$O(1)$
- 空间复杂度:$O(1)$
T3. 字符串连接删减字母(Medium)
https://leetcode.cn/problems/decremental-string-concatenation/
题解(状态 DP)
- 对于每个字符串 [i],有拼接到前方或拼接到后方两种方案;
- 当考虑 join(i, i + 1) 时,我们只需要关心两个字符串的首尾 4 个字符,对于中间的字符是不关心的。因此在遍历到字符串 [i] 时,我们检查以 [i - 1] 为结尾的子问题的可能方案,并维护以 [i] 为结尾的子问题的所有方案。
class Solution {
fun minimizeConcatenatedLength(words: Array<String>): Int {
val INF = 0x3F3F3F3F
val n = words.size
val dp = Array(n) { Array(26) { IntArray(26) { INF } }}
// 起始状态
dp[0][words[0][0] - 'a'][words[0][words[0].length - 1] - 'a'] = words[0].length
for (i in 1 until n) {
val word = words[i]
val x = word[0] - 'a'
val y = word[word.length - 1] - 'a'
// 枚举子问题状态
for (j in 0 until 26) {
for (k in 0 until 26) {
// 拼接到前方
if (y == j) {
dp[i][x][k] = Math.min(dp[i][x][k], dp[i - 1][j][k] + word.length - 1)
} else {
dp[i][x][k] = Math.min(dp[i][x][k], dp[i - 1][j][k] + word.length)
}
// 拼接到后方
if (x == k) {
dp[i][j][y] = Math.min(dp[i][j][y], dp[i - 1][j][k] + word.length - 1)
} else {
dp[i][j][y] = Math.min(dp[i][j][y], dp[i - 1][j][k] + word.length)
}
}
}
}
var ret = INF
for (j in 0 until 26) {
for (k in 0 until 26) {
ret = Math.min(ret, dp[n - 1][j][k])
}
}
return ret
}
}
复杂度分析:
- 时间复杂度:$O(n·C^2)$ C= 26
- 空间复杂度:$O(n·C^2)$
T4. 统计没有收到请求的服务器数目(Medium)
https://leetcode.cn/problems/count-zero-request-servers/
题解一(暴力)
线性扫描日志,并线性扫描查询列表,将日志记录投递到对应的查询中,同时使用散列表对相同服务器去重。
class Solution {
fun countServers(n: Int, logs: Array<IntArray>, x: Int, queries: IntArray): IntArray {
val m = queries.size
val sets = Array(m) { HashSet<Int>() }
val ret = IntArray(m)
// 暴力
for (log in logs) {
for ((i, query) in queries.withIndex()) {
if (log[1] in query - x .. query) {
sets[i].add(log[0])
}
}
}
// 输出
for (i in 0 until m) {
ret[i] = n - sets[i].size
}
return ret
}
}
复杂度分析:
- 时间复杂度:$O(nm)$ 超出时间限制;
- 空间复杂度:$O(nm)$ 散列表空间,最坏情况下每个查询中包含所有服务器记录。
题解二(排序 + 滑动窗口 + 离散化)
需要注意题目中的单调性,对于日志时间 log_i < log_j,当 log_i 时间晚于 query_k 时,那么日志时间更晚的 log_k 必然无法投递到 query_k 中,而暴力算法中没有利用单调性质。因此,我们先对 log 日志列表和 queries 查询列表按时间顺序排序,再来使用滑动窗口来维护每个查询中覆盖的日志信息。
class Solution {
fun countServers(n: Int, logs: Array<IntArray>, x: Int, queries: IntArray): IntArray {
val l = logs.size
val m = queries.size
val ret = IntArray(m)
// 查询索引
val indexs = Array(m) { it }
// 排序
Arrays.sort(logs) { i1, i2 ->
i1[1] - i2[1]
}
Arrays.sort(indexs) { i1, i2 ->
queries[i1] - queries[i2]
}
// 滑动窗口 + 离散化
var i = 0
var j = 0
val cnts = HashMap<Int, Int>()
for (id in indexs) {
val to = queries[id]
if (to <= x) throw IllegalStateException()
// 拓展右指针
while (j < l && logs[j][1] <= to) {
cnts[logs[j][0]] = cnts.getOrDefault(logs[j][0], 0) + 1
j++
}
// 收缩左指针
while (i < l && logs[i][1] < to - x) {
cnts[logs[i][0]] = cnts[logs[i][0]]!! - 1
if (cnts[logs[i][0]]!! == 0) cnts.remove(logs[i][0])
i++
}
ret[id] = n - cnts.size
}
return ret
}
}
复杂度分析:
- 时间复杂度:$O(mlgm + llogl + m + l)$ 瓶颈在排序;
- 空间复杂度:$O(m + n)$ 查询索引数组空间 + 散列表空间。