先从名字上来看,DeltaFIFO,首先它是一个FIFO,也就是一个先进先出的队列,而Delta代表变化的资源对象,其包含资源对象数据本身及其变化类型。
Delta的组成:
type Delta struct { Type DeltaType Object interface{}}
DeltaFIFO的组成:
type DeltaFIFO struct { ... items map[string]Deltas queue []string ...}type Deltas []Delta
具体来说,DeltaFIFO存储着map[object key]Deltas以及object key的queue,Delta装有对象数据及对象的变化类型。输入输出方面,Reflector负责DeltaFIFO的输入,Controller负责处理DeltaFIFO的输出。
一个对象能算出一个唯一的object key,其对应着一个Deltas,所以一个对象对应着一个Deltas。
而目前Delta有4种Type,分别是: Added、Updated、Deleted、Sync。针对同一个对象,可能有多个不同Type的Delta元素在Deltas中,表示对该对象做了不同的操作,另外,也可能有多个相同Type的Delta元素在Deltas中(除Deleted外,Delted类型会被去重),比如短时间内,多次对某一个对象进行了更新操作,那么就会有多个Updated类型的Delta放入Deltas中。
DeltaFIFO struct定义了DeltaFIFO的一些属性,下面挑几个重要的分析一下。
(1)lock:读写锁,操作DeltaFIFO中的items与queue之前都要先加锁;
(2)items:是个map,key根据对象算出,value为Deltas类型;
(3)queue:存储对象key的队列;
(4)keyFunc:计算对象key的函数;
// staging/src/k8s.io/client-go/tools/cache/delta_fifo.gotype DeltaFIFO struct { // lock/cond protects access to 'items' and 'queue'. lock sync.RWMutex cond sync.Cond // We depend on the property that items in the set are in // the queue and vice versa, and that all Deltas in this // map have at least one Delta. items map[string]Deltas queue []string // populated is true if the first batch of items inserted by Replace() has been populated // or Delete/Add/Update was called first. populated bool // initialPopulationCount is the number of items inserted by the first call of Replace() initialPopulationCount int // keyFunc is used to make the key used for queued item // insertion and retrieval, and should be deterministic. keyFunc KeyFunc // knownObjects list keys that are "known", for the // purpose of figuring out which items have been deleted // when Replace() or Delete() is called. knownObjects KeyListerGetter // Indication the queue is closed. // Used to indicate a queue is closed so a control loop can exit when a queue is empty. // Currently, not used to gate any of CRED operations. closed bool closedLock sync.Mutex
再来看一下Deltas类型,是Delta的切片类型。
type Deltas []Delta
继续看到Delta类型,其包含两个属性:
(1)Type:代表的是Delta的类型,有Added、Updated、Deleted、Sync四个类型;
(2)Object:存储的资源对象,如pod等资源对象;
type Delta struct { Type DeltaType Object interface{}}
// staging/src/k8s.io/client-go/tools/cache/delta_fifo.gotype DeltaType string// Change type definitionconst ( Added DeltaType = "Added" Updated DeltaType = "Updated" Deleted DeltaType = "Deleted" // The other types are obvious. You'll get Sync deltas when: // * A watch expires/errors out and a new list/watch cycle is started. // * You've turned on periodic syncs. // (Anything that trigger's DeltaFIFO's Replace() method.) Sync DeltaType = "Sync")
NewDeltaFIFO初始化了一个items和queue都为空的DeltaFIFO并返回。
// staging/src/k8s.io/client-go/tools/cache/delta_fifo.gofunc NewDeltaFIFO(keyFunc KeyFunc, knownObjects KeyListerGetter) *DeltaFIFO { f := &DeltaFIFO{ items: map[string]Deltas{}, queue: []string{}, keyFunc: keyFunc, knownObjects: knownObjects, } f.cond.L = &f.lock return f}
在前面分析Reflector时,Reflector的核心处理方法里有调用过几个方法,分别是r.store.Replace、r.store.Add、r.store.Update、r.store.Delete,结合前面文章的k8s informer的初始化与启动分析,或者简要的看一下下面的代码调用,就可以知道Reflector里的r.store其实就是DeltaFIFO,而那几个方法其实就是DeltaFIFO的Replace、Add、Update、Delete方法。
sharedIndexInformer.Run方法中调用NewDeltaFIFO初始化了DeltaFIFO,随后将DeltaFIFO作为参数传入初始化Config;
func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) { ... fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, s.indexer) cfg := &Config{ Queue: fifo, ... } func() { ... s.controller = New(cfg) ... }() ... s.controller.Run(stopCh)
在controller的Run方法中,调用NewReflector初始化Reflector时,将之前的DeltaFIFO传入,赋值给Reflector的store属性,所以Reflector里的r.store其实就是DeltaFIFO,而调用的r.store.Replace、r.store.Add、r.store.Update、r.store.Delete方法其实就是DeltaFIFO的Replace、Add、Update、Delete方法。
func (c *controller) Run(stopCh <-chan struct{}) { ... r := NewReflector( c.config.ListerWatcher, c.config.ObjectType, c.config.Queue, c.config.FullResyncPeriod, ) ...}
func NewReflector(lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector { return NewNamedReflector(naming.GetNameFromCallsite(internalPackages...), lw, expectedType, store, resyncPeriod)}func NewNamedReflector(name string, lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector { r := &Reflector{ ... store: store, ... } ... return r}
所以这里对DeltaFIFO核心处理方法进行分析,主要是分析DeltaFIFO的Replace、Add、Update、Delete方法。
DeltaFIFO的Add操作,主要逻辑:
(1)加锁;
(2)调用f.queueActionLocked,操作DeltaFIFO中的queue与Deltas,根据对象key构造Added类型的新Delta追加到相应的Deltas中;
(3)释放锁。
func (f *DeltaFIFO) Add(obj interface{}) error { f.lock.Lock() defer f.lock.Unlock() f.populated = true return f.queueActionLocked(Added, obj)}
可以看到基本上DeltaFIFO所有的操作都有加锁操作,所以都是并发安全的。
queueActionLocked负责操作DeltaFIFO中的queue与Deltas,根据对象key构造新的Delta追加到对应的Deltas中,主要逻辑:
(1)计算出对象的key;
(2)构造新的Delta,将新的Delta追加到Deltas末尾;
(3)调用dedupDeltas将Delta去重(目前只将Deltas最末尾的两个delete类型的Delta去重);
(4)判断对象的key是否在queue中,不在则添加入queue中;
(5)根据对象key更新items中的Deltas;
(6)通知所有的消费者解除阻塞;
func (f *DeltaFIFO) queueActionLocked(actionType DeltaType, obj interface{}) error { //(1)计算出对象的key id, err := f.KeyOf(obj) if err != nil { return KeyError{obj, err} } //(2)构造新的Delta,将新的Delta追加到Deltas末尾 newDeltas := append(f.items[id], Delta{actionType, obj}) //(3)调用dedupDeltas将Delta去重(目前只将Deltas最末尾的两个delete类型的Delta去重) newDeltas = dedupDeltas(newDeltas) if len(newDeltas) > 0 { //(4)判断对象的key是否在queue中,不在则添加入queue中 if _, exists := f.items[id]; !exists { f.queue = append(f.queue, id) } //(5)根据对象key更新items中的Deltas f.items[id] = newDeltas //(6)通知所有的消费者解除阻塞 f.cond.Broadcast() } else { // We need to remove this from our map (extra items in the queue are // ignored if they are not in the map). delete(f.items, id) } return nil}
DeltaFIFO的Update操作,主要逻辑:
(1)加锁;
(2)调用f.queueActionLocked,操作DeltaFIFO中的queue与Deltas,根据对象key构造Updated类型的新Delta追加到相应的Deltas中;
(3)释放锁。
func (f *DeltaFIFO) Update(obj interface{}) error { f.lock.Lock() defer f.lock.Unlock() f.populated = true return f.queueActionLocked(Updated, obj)}
DeltaFIFO的Delete操作,主要逻辑:
(1)计算出对象的key;
(2)加锁;
(3)items中不存在对象key,则直接return,跳过处理;
(4)调用f.queueActionLocked,操作DeltaFIFO中的queue与Deltas,根据对象key构造Deleted类型的新Delta追加到相应的Deltas中;
(5)释放锁。
func (f *DeltaFIFO) Delete(obj interface{}) error { id, err := f.KeyOf(obj) if err != nil { return KeyError{obj, err} } f.lock.Lock() defer f.lock.Unlock() f.populated = true // informer的用法中,f.knownObjects不为nil if f.knownObjects == nil { if _, exists := f.items[id]; !exists { // Presumably, this was deleted when a relist happened. // Don't provide a second report of the same deletion. return nil } } else { // We only want to skip the "deletion" action if the object doesn't // exist in knownObjects and it doesn't have corresponding item in items. // Note that even if there is a "deletion" action in items, we can ignore it, // because it will be deduped automatically in "queueActionLocked" _, exists, err := f.knownObjects.GetByKey(id) _, itemsExist := f.items[id] if err == nil && !exists && !itemsExist { // Presumably, this was deleted when a relist happened. // Don't provide a second report of the same deletion. return nil } } return f.queueActionLocked(Deleted, obj)}
DeltaFIFO的Replace操作,主要逻辑:
(1)加锁;
(2)遍历list,计算对象的key,循环调用f.queueActionLocked,操作DeltaFIFO中的queue与Deltas,根据对象key构造Sync类型的新Delta追加到相应的Deltas中;
(3)对比DeltaFIFO中的items与Replace方法的list,如果DeltaFIFO中的items有,但传进来Replace方法的list中没有某个key,则调用f.queueActionLocked,操作DeltaFIFO中的queue与Deltas,根据对象key构造Deleted类型的新Delta追加到相应的Deltas中(避免重复,使用DeletedFinalStateUnknown包装对象);
(4)释放锁;
// staging/src/k8s.io/client-go/tools/cache/delta_fifo.gofunc (f *DeltaFIFO) Replace(list []interface{}, resourceVersion string) error { //(1)加锁 f.lock.Lock() //(4)释放锁 defer f.lock.Unlock() keys := make(sets.String, len(list)) //(2)遍历list,计算对象的key,循环调用f.queueActionLocked,操作DeltaFIFO中的queue与Deltas,根据对象key构造Sync类型的新Delta追加到相应的Deltas中 for _, item := range list { key, err := f.KeyOf(item) if err != nil { return KeyError{item, err} } keys.Insert(key) if err := f.queueActionLocked(Sync, item); err != nil { return fmt.Errorf("couldn't enqueue object: %v", err) } } // informer的用法中,f.knownObjects不为nil if f.knownObjects == nil { // Do deletion detection against our own list. queuedDeletions := 0 for k, oldItem := range f.items { if keys.Has(k) { continue } var deletedObj interface{} if n := oldItem.Newest(); n != nil { deletedObj = n.Object } queuedDeletions++ if err := f.queueActionLocked(Deleted, DeletedFinalStateUnknown{k, deletedObj}); err != nil { return err } } if !f.populated { f.populated = true // While there shouldn't be any queued deletions in the initial // population of the queue, it's better to be on the safe side. f.initialPopulationCount = len(list) + queuedDeletions } return nil } //(3)找出DeltaFIFO中的items有,但传进来Replace方法的list中没有的key,调用f.queueActionLocked,操作DeltaFIFO中的queue与Deltas,根据对象key构造Deleted类型的新Delta追加到相应的Deltas中(避免重复,使用DeletedFinalStateUnknown包装对象) // Detect deletions not already in the queue. knownKeys := f.knownObjects.ListKeys() queuedDeletions := 0 for _, k := range knownKeys { if keys.Has(k) { continue } deletedObj, exists, err := f.knownObjects.GetByKey(k) if err != nil { deletedObj = nil klog.Errorf("Unexpected error %v during lookup of key %v, placing DeleteFinalStateUnknown marker without object", err, k) } else if !exists { deletedObj = nil klog.Infof("Key %v does not exist in known objects store, placing DeleteFinalStateUnknown marker without object", k) } queuedDeletions++ if err := f.queueActionLocked(Deleted, DeletedFinalStateUnknown{k, deletedObj}); err != nil { return err } } // 第一次调用Replace方法后,populated值为true if !f.populated { f.populated = true // initialPopulationCount代表第一次调用Replace方法加入DeltaFIFO中的items数量 f.initialPopulationCount = len(list) + queuedDeletions } return nil}
DeltaFIFO的Pop操作,queue为空时会阻塞,直至非空,主要逻辑:
(1)加锁;
(2)循环判断queue的长度是否为0,为0则阻塞住,调用f.cond.Wait(),等待通知(与queueActionLocked方法中的f.cond.Broadcast()相对应,即queue中有对象key则发起通知);
(3)取出queue的队头对象key;
(4)更新queue,把queue中所有的对象key前移,相当于把第一个对象key给pop出去;
(5)initialPopulationCount变量减1,当减到0时则说明initialPopulationCount代表第一次调用Replace方法加入DeltaFIFO中的对象key已经被pop完成;
(6)根据对象key从items中获取Deltas;
(7)把Deltas从items中删除;
(8)调用PopProcessFunc处理获取到的Deltas;
(9)释放锁。
// staging/src/k8s.io/client-go/tools/cache/delta_fifo.gofunc (f *DeltaFIFO) Pop(process PopProcessFunc) (interface{}, error) { //(1)加锁 f.lock.Lock() //(9)释放锁 defer f.lock.Unlock() //(2)循环判断queue的长度是否为0,为0则阻塞住,调用f.cond.Wait(),等待通知(与queueActionLocked方法中的f.cond.Broadcast()相对应,即queue中有对象key则发起通知) for { for len(f.queue) == 0 { // When the queue is empty, invocation of Pop() is blocked until new item is enqueued. // When Close() is called, the f.closed is set and the condition is broadcasted. // Which causes this loop to continue and return from the Pop(). if f.IsClosed() { return nil, ErrFIFOClosed } f.cond.Wait() } //(3)取出queue的队头对象key id := f.queue[0] //(4)更新queue,把queue中所有的对象key前移,相当于把第一个对象key给pop出去 f.queue = f.queue[1:] //(5)initialPopulationCount变量减1,当减到0时则说明initialPopulationCount代表第一次调用Replace方法加入DeltaFIFO中的对象key已经被pop完成 if f.initialPopulationCount > 0 { f.initialPopulationCount-- } //(6)根据对象key从items中获取对象 item, ok := f.items[id] if !ok { // Item may have been deleted subsequently. continue } //(7)把对象从items中删除 delete(f.items, id) //(8)调用PopProcessFunc处理pop出来的对象 err := process(item) if e, ok := err.(ErrRequeue); ok { f.addIfNotPresent(id, item) err = e.Err } // Don't need to copyDeltas here, because we're transferring // ownership to the caller. return item, err }}
HasSynced从字面意思上看代表是否同步完成,是否同步完成其实是指第一次从kube-apiserver中获取到的全量的对象是否全部从DeltaFIFO中pop完成,全部pop完成,说明list回来的对象已经全部同步到了Indexer缓存中去了。
方法是否返回true是根据populated和initialPopulationCount两个变量来判断的,当且仅当populated为true且initialPopulationCount 为0的时候方法返回true,否则返回false。
populated属性值在第一次调用DeltaFIFO的Replace方法中就已经将其值设置为true。
而initialPopulationCount的值在第一次调用DeltaFIFO的Replace方法中设置值为加入到items中的Deltas的数量,然后每pop一个Deltas,则initialPopulationCount的值减1,pop完成时值则为0。
// staging/src/k8s.io/client-go/tools/cache/delta_fifo.gofunc (f *DeltaFIFO) HasSynced() bool { f.lock.Lock() defer f.lock.Unlock() return f.populated && f.initialPopulationCount == 0}
在前面做informer的初始化与启动分析时也提到过,DeltaFIFO.HasSynced方法的调用链如下:
sharedIndexInformer.WaitForCacheSync --> cache.WaitForCacheSync --> sharedIndexInformer.controller.HasSynced --> controller.config.Queue.HasSynced --> DeltaFIFO.HasSynced
至此DeltaFIFO的分析就结束了,最后来总结一下。
Reflector调用的r.store.Replace
、r.store.Add
、r.store.Update
、r.store.Delete
方法其实就是DeltaFIFO的Replace、Add、Update、Delete方法。
(1)DeltaFIFO.Replace:构造Sync类型的Delta加入DeltaFIFO中,此外还会对比DeltaFIFO中的items与Replace方法的list,如果DeltaFIFO中的items有,但传进来Replace方法的list中没有某个key,则构造Deleted类型的Delta加入DeltaFIFO中;
(2)DeltaFIFO.Add:构建Added类型的Delta加入DeltaFIFO中;
(3)DeltaFIFO.Update:构建Updated类型的Delta加入DeltaFIFO中;
(4)DeltaFIFO.Delete:构建Deleted类型的Delta加入DeltaFIFO中;
(5)DeltaFIFO.Pop:从DeltaFIFO的queue中pop出队头key,从map中取出key对应的Deltas返回,并把该key:Deltas
从map中移除;
(6)DeltaFIFO.HasSynced:返回true代表同步完成,是否同步完成指第一次从kube-apiserver中获取到的全量的对象是否全部从DeltaFIFO中pop完成,全部pop完成,说明list回来的对象已经全部同步到了Indexer缓存中去了;
在对informer中的DeltaFIFO分析完之后,接下来将分析informer中的Controller与Processor。