JUC同步锁原理源码解析二--ReentrantReadWriteLock
JUC同步锁原理源码解析二----ReentrantReadWriteLock
1.读写锁的来源
? 在开发场景下,对于写操作我们为了保证原子性所以需要上锁,但是对于读操作,由于其不改变数据,只是单纯对数据进行读取,但是每次都上一把互斥锁,阻塞所有请求。这个明显不符合读多写少的场景。所以将锁分为两把:读锁和写锁。
2.读写锁的底层实现
? 读写锁的底层实现依旧依赖于AQS。具体底层实现,请查看上一篇文章的介绍
2.AQS源码
Node节点
static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null;
/** waitStatus value to indicate thread has cancelled */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking */
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition */
static final int CONDITION = -2;
static final int PROPAGATE = -3;
volatile int waitStatus;
volatile Node prev;
volatile Node next;
volatile Thread thread;
Node nextWaiter;
}
AbstractQueuedSynchronizer类
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
private transient volatile Node head;
/**
* Tail of the wait queue, lazily initialized. Modified only via
* method enq to add new wait node.
*/
private transient volatile Node tail;
/**
* The synchronization state.
*/
private volatile int state;//最重要的一个变量
}
ConditionObject类
public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
/** First node of condition queue. */
private transient Node firstWaiter;
/** Last node of condition queue. */
private transient Node lastWaiter;
}
accquire方法
public final void acquire(int arg) {
if (!tryAcquire(arg) &&//尝试获取锁
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//如果获取锁失败,添加到队列中,由于ReentrantLock是独占锁所以节点必须是EXCLUSIVE类型
selfInterrupt();//添加中断标识位
}
addWaiter方法
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);//新建节点
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;//获取到尾指针
if (pred != null) {//尾指针不等于空,将当前节点替换为尾指针
node.prev = pred;
if (compareAndSetTail(pred, node)) {//采用尾插法,充分利用时间局部性和空间局部性。尾插的节点一般不容易被取消。
pred.next = node;
return node;
}
}
enq(node);//cas失败后执行入队操作,继续尝试
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;//获取尾指针
if (t == null) { //代表当前队列没有节点
if (compareAndSetHead(new Node()))//将当前节点置为头结点
tail = head;
} else {//当前队列有节点
node.prev = t;//
if (compareAndSetTail(t, node)) {//将当前节点置为尾结点
t.next = node;
return t;
}
}
}
}
acquireQueued方法
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();//找到当前节点的前驱节点
if (p == head && tryAcquire(arg)) {//前驱节点等于头节点尝试cas抢锁。
setHead(node);//抢锁成功将当前节点设置为头节点
p.next = null; // help GC 当头结点置空
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&//当队列中有节点在等待,判断是否应该阻塞
parkAndCheckInterrupt())//阻塞等待,检查中断标识位
interrupted = true;//将中断标识位置为true
}
} finally {
if (failed)//
cancelAcquire(node);//取消当前节点
}
}
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)//当前节点为空直接返回
return;
node.thread = null;//要取消了将当前节点的线程置为空
// Skip cancelled predecessors
Node pred = node.prev;//获取到当前节点的前驱节点
while (pred.waitStatus > 0)//如果当前节点的前驱节点的状态大于0,代表是取消状态,一直找到不是取消状态的节点
node.prev = pred = pred.prev;
Node predNext = pred.next;//将当前要取消的节点断链
node.waitStatus = Node.CANCELLED;//将当前节点的等待状态置为CANCELLED
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) {//如果当前节点是尾结点,将尾结点替换为浅语节点
compareAndSetNext(pred, predNext, null);//将当前节点的下一个节点置为空,因为当前节点是最后一个节点没有next指针
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&//前驱节点不等于头结点
((ws = pred.waitStatus) == Node.SIGNAL ||//前驱节点的状态不等于SIGNAL
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&//前驱节点的状态小于0,并且cas将前驱节点的等待置为SIGNAL
pred.thread != null) {//前驱节点的线程补位空
Node next = node.next;//获取当前节点的next指针
if (next != null && next.waitStatus <= 0)//如果next指针不等于空并且等待状态小于等于0,标识节点有效
compareAndSetNext(pred, predNext, next);//将前驱节点的next指针指向下一个有效节点
} else {
unparkSuccessor(node);//唤醒后续节点 条件:1.前驱节点是头结点 2.当前节点不是signal,在ReentransLock中基本不会出现,在读写锁时就会出现
}
node.next = node; // help GC 将引用指向自身
}
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;//获取当前节点状态
if (ws < 0)//如果节点为负数也即不是取消节点
compareAndSetWaitStatus(node, ws, 0);//cas将当前节点置为0
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;//获取到下一个节点
if (s == null || s.waitStatus > 0) {//下一个节点等于空或者下一个节点是取消节点
s = null;//将s置为空
for (Node t = tail; t != null && t != node; t = t.prev)//从尾结点遍历找到一个不是取消状态的节点
if (t.waitStatus <= 0)
s = t;
}
if (s != null)//如果s不等于空
LockSupport.unpark(s.thread);//唤醒当前节点s
}
shouldParkAfterFailedAcquire方法
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;//获取上一个节点的等待状态
if (ws == Node.SIGNAL)//如果状态为SIGNAL,代表后续节点有节点可以唤醒,可以安心阻塞去
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {//如果当前状态大于0,代表节点为CANCELLED状态
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;//从尾节点开始遍历,找到下一个状态不是CANCELLED的节点。将取消节点断链移除
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
//这里需要注意ws>0时,已经找到了一个不是取消状态的前驱节点。
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//将找到的不是CANCELLED节点的前驱节点,将其等待状态置为SIGNAL
}
return false;
}
cancelAcquire方法
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)//当前节点为空直接返回
return;
node.thread = null;//要取消了将当前节点的线程置为空
// Skip cancelled predecessors
Node pred = node.prev;//获取到当前节点的前驱节点
while (pred.waitStatus > 0)//如果当前节点的前驱节点的状态大于0,代表是取消状态,一直找到不是取消状态的节点
node.prev = pred = pred.prev;
Node predNext = pred.next;//将当前要取消的节点断链
node.waitStatus = Node.CANCELLED;//将当前节点的等待状态置为CANCELLED
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) {//如果当前节点是尾结点,将尾结点替换为浅语节点
compareAndSetNext(pred, predNext, null);//将当前节点的下一个节点置为空,因为当前节点是最后一个节点没有next指针
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&//前驱节点不等于头结点
((ws = pred.waitStatus) == Node.SIGNAL ||//前驱节点的状态不等于SIGNAL
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&//前驱节点的状态小于0,并且cas将前驱节点的等待置为SIGNAL
pred.thread != null) {//前驱节点的线程补位空
Node next = node.next;//获取当前节点的next指针
if (next != null && next.waitStatus <= 0)//如果next指针不等于空并且等待状态小于等于0,标识节点有效
compareAndSetNext(pred, predNext, next);//将前驱节点的next指针指向下一个有效节点
} else {
unparkSuccessor(node);//唤醒后续节点 条件:1.前驱节点是头结点 2.当前节点不是signal,在ReentransLock中基本不会出现,在读写锁时就会出现
}
node.next = node; // help GC 将引用指向自身
}
}
unparkSuccessor方法
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;//获取当前节点状态
if (ws < 0)//如果节点为负数也即不是取消节点
compareAndSetWaitStatus(node, ws, 0);//cas将当前节点置为0
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;//获取到下一个节点
if (s == null || s.waitStatus > 0) {//下一个节点等于空或者下一个节点是取消节点
s = null;//将s置为空
for (Node t = tail; t != null && t != node; t = t.prev)//从尾结点遍历找到一个不是取消状态的节点
if (t.waitStatus <= 0)
s = t;
}
if (s != null)//如果s不等于空
LockSupport.unpark(s.thread);//唤醒当前节点s
}
release方法
public final boolean release(int arg) {
if (tryRelease(arg)) {//子类实现如何释放锁
Node h = head;//获取到头结点
if (h != null && h.waitStatus != 0)//获取到头结点,如果头结点不为空,等待状态不为0,唤醒后续节点
unparkSuccessor(h);
return true;
}
return false;
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;//获取节点的等待状态
if (ws < 0)//如果等待状态小于0,标识节点属于有效节点
compareAndSetWaitStatus(node, ws, 0);//将当前节点的等待状态置为0
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;//获取到下一个节点
if (s == null || s.waitStatus > 0) {//如果节点是空,或者是取消状态的节点,就找到一个非取消状态的节点,将取消状态的节点断链后由垃圾回收器进行回收
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)//节点不用空
LockSupport.unpark(s.thread);//唤醒当前等待的有效节点S
}
acquireShared方法
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)//由子类实现
doAcquireShared(arg);
}
doAcquireShared方法
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);//将共享节点也即读线程入队并返回
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();//找到节点的前驱节点
if (p == head) {//如果前驱节点等于头结点
int r = tryAcquireShared(arg);//尝试获取共享锁数量
if (r >= 0) {//如果锁的数量大于0,表示还有多余的共享锁。这里等于0也需要进一步判断。由于如果当执行到这里时,有另外的线程释放了共享锁,如果不进行判断,将会导致释放锁的线程没办法唤醒其他线程。所以这里会伪唤醒一个节点,唤醒的节点后续如果没有锁释放,依旧阻塞在当前parkAndCheckInterrupt方法中
setHeadAndPropagate(node, r);//将当前节点的等待状态设置为Propagate。
p.next = null; // help GC
if (interrupted)//判断是会否中断过
selfInterrupt();//设置中断标识位
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&//判断是否应该阻塞等待
parkAndCheckInterrupt方法中())//阻塞并检查中断标识
interrupted = true;//重置中断标识位
}
} finally {
if (failed)//如果失败
cancelAcquire(node);//取消节点
}
}
setHeadAndPropagate方法
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node);//将当前节点置为头结点
/*
* Try to signal next queued node if:
* Propagation was indicated by caller,
* or was recorded (as h.waitStatus either before
* or after setHead) by a previous operation
* (note: this uses sign-check of waitStatus because
* PROPAGATE status may transition to SIGNAL.)
* and
* The next node is waiting in shared mode,
* or we don't know, because it appears null
*
* The conservatism in both of these checks may cause
* unnecessary wake-ups, but only when there are multiple
* racing acquires/releases, so most need signals now or soon
* anyway.
*/
if (propagate > 0 //可获取的共享锁也即读锁的数量,对于ReentrantReadWriteLock而言,永远都是1,所以会继续唤醒下一个读线程
|| h == null //如果旧的头结点为空
|| h.waitStatus < 0 ||//头结点的等待状态不为0
(h = head) == null || h.waitStatus < 0) {//旧头节点不为空并且等待状态小于0也即是有效节点
Node s = node.next;//获取到node的下一个节点
if (s == null || s.isShared())//如果node的下一个节点为空或者是共享节点
doReleaseShared();//唤醒下一个线程
}
}
releaseShared方法
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {//子类实现释放锁
doReleaseShared();//唤醒后续线程
return true;//释放成功
}
return false;//释放是吧
}
doReleaseShared方法
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;//获取到当前头结点
if (h != null && h != tail) {//如果头结点不为空并且不等于尾结点
int ws = h.waitStatus;//获取当前节点的等待状态
if (ws == Node.SIGNAL) {//如果状态为SIGNAL
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))//cas将SIGNAL状态置为0。SIGNAL标识后续有线程需要唤醒
continue; // loop to recheck cases
unparkSuccessor(h);//唤醒后续线程
}
else if (ws == 0 &&//如果当前状态为0。表示有线程将其置为0
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))//cas将0状态置为PROPAGATE。在多个共享锁同时释放时,方便继续进行读传播,唤醒后续节点
continue; // loop on failed CAS
}
if (h == head)//如果头结点没有改变,证明没有必要继续循环等待了,直接退出吧,如果头结点放生变化,可能有其他线程释放了锁。
break;
}
}
总结:AQS提供了统一的模板,对于如何入队出队以及线程的唤醒都由AQS提供默认的实现,只需要子类实现自己上锁和解锁的逻辑。
3.ReentrantReadWriteLock
基本使用
import java.util.Map;
import java.util.TreeMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class RWDictionary {
private final Map<String, String> m = new TreeMap<String, String>();
private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();
public String get(String key) {
r.lock();
try { return m.get(key); }
finally { r.unlock(); }
}
public String[] allKeys() {
r.lock();
try {
return (String[])m.keySet().toArray();
}
finally { r.unlock(); }
}
public String put(String key, String value) {
w.lock();
try { return m.put(key, value); }
finally { w.unlock(); }
}
public void clear() {
w.lock();
try { m.clear(); }
finally { w.unlock(); }
}
}
Sync类
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 6317671515068378041L;
/*
* Read vs write count extraction constants and functions.
* Lock state is logically divided into two unsigned shorts:
* The lower one representing the exclusive (writer) lock hold count,
* and the upper the shared (reader) hold count.
*/
static final int SHARED_SHIFT = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
/** Returns the number of shared holds represented in count */
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }//高16位代表共享锁也即读锁
/** Returns the number of exclusive holds represented in count */
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }//低16位代表独占锁也即写锁
}
公平锁的FairSync类实现
//读写锁中公平锁的实现:如果后续队列中有等待的节点,那么进行排队。但是这样的性能并不高,可能造成写饥饿。
static final class FairSync extends Sync {
private static final long serialVersionUID = -2274990926593161451L;
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}
//如果队列中有节点在排队,那么就进行等待
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
非公平锁的NonfairSync类实现
//非公平锁的实现相对来说性能较高,不阻塞,可以直接抢锁,防止写饥饿。同时有写线程排队,那么后续的所有读操作都需要进行排队
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -8159625535654395037L;
final boolean writerShouldBlock() {
return false; // writers can always barge //非公平锁写锁永远不阻塞,防止写饥饿
}
final boolean readerShouldBlock() {
/* As a heuristic to avoid indefinite writer starvation,
* block if the thread that momentarily appears to be head
* of queue, if one exists, is a waiting writer. This is
* only a probabilistic effect since a new reader will not
* block if there is a waiting writer behind other enabled
* readers that have not yet drained from the queue.
*/
return apparentlyFirstQueuedIsExclusive();
}
}
//如果队列中有任务并且不是共享节点也即不是读操作,那么返回true,进行阻塞
final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&//头结点不等于空
(s = h.next) != null &&//头结点的下一个节点补位空
!s.isShared() &&//并且当前节点不是共享节点,也即读线程
s.thread != null;//线程不为空
}
写锁的lock方法:
public void lock() {
sync.acquire(1);
}
//同样调用acquire的方法,请参考上文AQS的acquire方法的实现。同样都是获取失败进行排队
//子类获取锁的过程
protected final boolean tryAcquire(int acquires) {
/*
* Walkthrough:
* 1. If read count nonzero or write count nonzero
* and owner is a different thread, fail.
* 2. If count would saturate, fail. (This can only
* happen if count is already nonzero.)
* 3. Otherwise, this thread is eligible for lock if
* it is either a reentrant acquire or
* queue policy allows it. If so, update state
* and set owner.
*/
Thread current = Thread.currentThread();//获取当前线程
int c = getState();//获取当前state状态值
int w = exclusiveCount(c);//获取读锁的数量,这里doug lea一直都是使用二进制的风格
if (c != 0) {//代表持有锁
// (Note: if c != 0 and w == 0 then shared count != 0)
if (w == 0 || current != getExclusiveOwnerThread())//如果写锁为0,或则当前线程不是写锁的持有线程
return false;//返回false
if (w + exclusiveCount(acquires) > MAX_COUNT)//当前锁重入次数大于最大值,抛出异常
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);//直接设置状态,代表锁重入次数加1
return true;//返回获取锁成功
}
if (writerShouldBlock() ||//写锁是否应该阻塞
!compareAndSetState(c, c + acquires))//cas尝试获取锁
return false;
setExclusiveOwnerThread(current);//cas抢锁成功,直接将写锁的持有线程设置为当前线程
return true;//返回true代表获取锁成功
}
writerShouldBlock的实现
//writerShouldBlock的实现请参考上面的公平锁和非公平锁的实现
写锁的unlock方法:
public void unlock() {
sync.release(1);
}
//这里是AQS的模板方法
public final boolean release(int arg) {
if (tryRelease(arg)) {//子类实现如何释放锁
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())//如果不是独占锁也即写锁,直接抛异常
throw new IllegalMonitorStateException();
int nextc = getState() - releases;//将锁的数量减少
boolean free = exclusiveCount(nextc) == 0;//如果独占锁也即写锁数量为0,标识已经释放。大于1是因为锁重入的问题
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
读锁的lock方法:
public void lock() {
sync.acquireShared(1);
}
//acquireShared方法请看上面AQS的实现
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
protected final int tryAcquireShared(int unused) {
/*
* Walkthrough:
* 1. If write lock held by another thread, fail.
* 2. Otherwise, this thread is eligible for
* lock wrt state, so ask if it should block
* because of queue policy. If not, try
* to grant by CASing state and updating count.
* Note that step does not check for reentrant
* acquires, which is postponed to full version
* to avoid having to check hold count in
* the more typical non-reentrant case.
* 3. If step 2 fails either because thread
* apparently not eligible or CAS fails or count
* saturated, chain to version with full retry loop.
*/
Thread current = Thread.currentThread();//获取当前线程
int c = getState();//获取当前state状态
if (exclusiveCount(c) != 0 &&//如果独占锁也即写锁的数量不等于0
getExclusiveOwnerThread() != current)//独占锁的拥有线程不是当前线程
return -1;//直接返回-1,获取失败
int r = sharedCount(c);//获取共享锁的数量
if (!readerShouldBlock() &&//读锁是否应该被阻塞
r < MAX_COUNT &&//读锁数量是否小于最大数量
compareAndSetState(c, c + SHARED_UNIT)) {//cas将读锁+1
if (r == 0) {//当前共享锁也即读锁数量为0
firstReader = current;//标记为第一个读线程
firstReaderHoldCount = 1;//将第一个读线程持有锁数量置为1,主要为了判断读锁的重入
} else if (firstReader == current) {//第一个线程读等于当前线程
firstReaderHoldCount++;//第一个读线程持有锁数量
} else {
HoldCounter rh = cachedHoldCounter;//先读取到最后一个线程持有共享锁的数量
if (rh == null || rh.tid != getThreadId(current))//如果为空或者最后一个线程不是当前线程
cachedHoldCounter = rh = readHolds.get();//从缓存中获取当前线程持有读锁的数量
else if (rh.count == 0)//如果读锁持有数量为0
readHolds.set(rh);//将值设置并保存
rh.count++;//持有线程数+1
}
return 1;//返回1标识获取锁成功
}
return fullTryAcquireShared(current);
}
final int fullTryAcquireShared(Thread current) {
/*
* This code is in part redundant with that in
* tryAcquireShared but is simpler overall by not
* complicating tryAcquireShared with interactions between
* retries and lazily reading hold counts.
*/
HoldCounter rh = null;//
for (;;) {
int c = getState();//获取当前状态值
if (exclusiveCount(c) != 0) {//如果持有写锁的线程数补位0
if (getExclusiveOwnerThread() != current)//持有写锁的线程不是当前线程
return -1;
// else we hold the exclusive lock; blocking here
// would cause deadlock.
} else if (readerShouldBlock()) {//读锁是否应该被阻塞
// Make sure we're not acquiring read lock reentrantly
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current)) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
if (rh.count == 0)
return -1;
}
}
if (sharedCount(c) == MAX_COUNT)//如果读线程的数量等于最大数量,抛出异常
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {//cas尝试抢锁
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}
读锁的unlock方法
public void unlock() {
sync.releaseShared(1);
}
//详情请查看上面AQS的实现
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
if (firstReader == current) {//如果当前线程是第一个读线程
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)//当前第一个读线程持有的读锁的数量是1
firstReader = null;//直接置位空
else
firstReaderHoldCount--;//否则将持有读锁的数量减1
} else {
HoldCounter rh = cachedHoldCounter;//先获取最后一个读线程的持有信息
if (rh == null || rh.tid != getThreadId(current))//如果rh为空或者最后一个读线程不是当前线程
rh = readHolds.get();//从缓存中获取当前线程的持有锁的信息
int count = rh.count;//获取到数量
if (count <= 1) {//如果持有读锁的数量小于等于1
readHolds.remove();//直接清空缓存
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;//减去持有读锁的数量
}
for (;;) {
int c = getState();//获取当前状态
int nextc = c - SHARED_UNIT;//将读锁的数量减1
if (compareAndSetState(c, nextc))//cas原子性赋值
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
return nextc == 0;//如果为0表示当前线程已经释放了所有读锁。
}
}
4.留言
本文章只是JUC 中AQS的一部分,后续的文章会对基于AQS锁实现的子类进行拓展讲解,以上文章内容基于个人以及结合别人文章的理解,如果有问题或者不当之处欢迎大家留言交流。由于为了保证观看流畅性,其中一部分源码有重复的地方。请见谅